Spacer promoters are orientation-dependent activators of pre-rRNA transcription in Drosophila melanogaster

1990 ◽  
Vol 10 (9) ◽  
pp. 4667-4677
Author(s):  
G Grimaldi ◽  
P Fiorentini ◽  
P P Di Nocera

In Drosophila melanogaster, 240-base-pair (bp) repeats, clustered in tandem arrays within the ribosomal DNA nontranscribed spacer region, include sites of RNA polymerase I-dependent transcription initiation and elements that stimulate the rate of transcription from the downstream precursor rRNA (pre-rRNA) promoter. We have analyzed the in vivo transcriptional activity of a large set of recombinant constructs in which tandem arrays of distinct segments derived from a 240-bp repeat were inserted upstream of the pre-rRNA promoter. The results indicate that activating spacer elements are confined to a region of 70 bp. Enhancing units overlap with spacer promoters, since DNA segments that stimulate transcription at the gene promoter also efficiently drive transcription initiation. The finding that artificial spacer arrays invariably stimulate pre-rRNA transcription initiation in an orientation-dependent fashion suggest that spacer-initiated transcription is involved in the enhancement process. The minimal spacer activating segment includes a perfect copy of a core domain of the gene promoter extending from -24 to +10 flanked by poorly homologous upstream DNA sequences. Spacer and gene promoters are functionally interchangeable as activating units. However, the different combination of DNA elements within the two determines a functional hierarchy, as only the pre-rRNA promoter is responsive to the stimulatory action of upstream units.

1990 ◽  
Vol 10 (9) ◽  
pp. 4667-4677 ◽  
Author(s):  
G Grimaldi ◽  
P Fiorentini ◽  
P P Di Nocera

In Drosophila melanogaster, 240-base-pair (bp) repeats, clustered in tandem arrays within the ribosomal DNA nontranscribed spacer region, include sites of RNA polymerase I-dependent transcription initiation and elements that stimulate the rate of transcription from the downstream precursor rRNA (pre-rRNA) promoter. We have analyzed the in vivo transcriptional activity of a large set of recombinant constructs in which tandem arrays of distinct segments derived from a 240-bp repeat were inserted upstream of the pre-rRNA promoter. The results indicate that activating spacer elements are confined to a region of 70 bp. Enhancing units overlap with spacer promoters, since DNA segments that stimulate transcription at the gene promoter also efficiently drive transcription initiation. The finding that artificial spacer arrays invariably stimulate pre-rRNA transcription initiation in an orientation-dependent fashion suggest that spacer-initiated transcription is involved in the enhancement process. The minimal spacer activating segment includes a perfect copy of a core domain of the gene promoter extending from -24 to +10 flanked by poorly homologous upstream DNA sequences. Spacer and gene promoters are functionally interchangeable as activating units. However, the different combination of DNA elements within the two determines a functional hierarchy, as only the pre-rRNA promoter is responsive to the stimulatory action of upstream units.


1986 ◽  
Vol 6 (12) ◽  
pp. 4458-4466
Author(s):  
D E Ingolia ◽  
M R Al-Ubaidi ◽  
C Y Yeung ◽  
H A Bigo ◽  
D Wright ◽  
...  

A genomic library was prepared with DNA from a genetically enriched mouse cell line in which amplified copies of the adenosine deaminase (ADA) gene account for over 5% of the genome. Overlapping cosmid clones encompassing the entire ADA structural gene were isolated from this genomic library and used for subsequent structural and functional analyses. Nuclease protection and primer extension analyses served to identify the location of multiple transcription initiation sites at the 5' end of the structural gene. Promoter activity was found by functional analyses to reside within a 240-base-pair fragment which contains the transcription initiation sites. Sequences upstream of the transcription initiation sites are very G + C rich (77%) and include a 22 nucleotide stretch of deoxyguanylate residues and two potential Sp1 transcription factor-binding sites. Comparison of the mouse and human ADA gene promoters revealed the presence of several regions that are highly conserved with regard to both sequence content and location and may represent genetic elements which are involved in ADA gene expression.


1991 ◽  
Vol 11 (2) ◽  
pp. 632-640 ◽  
Author(s):  
I Reveillaud ◽  
A Niedzwiecki ◽  
K G Bensch ◽  
J E Fleming

Superoxide dismutases (SOD) play a major role in the intracellular defense against oxygen radical damage to aerobic cells. In eucaryotes, the cytoplasmic form of the enzyme is a 32-kDa dimer containing two copper and two zinc atoms (CuZn SOD) that catalyzes the dismutation of the superoxide anion (O2-) to H2O2 and O2. Superoxide-mediated damage has been implicated in a number of biological processes, including aging and cancer; however, it is not certain whether endogenously elevated levels of SOD will reduce the pathological events resulting from such damage. To understand the in vivo relationship between an efficient dismutation of O2- and oxidative injury to biological structures, we generated transgenic strains of Drosophila melanogaster overproducing CuZn SOD. This was achieved by microinjecting Drosophila embryos with P-elements containing bovine CuZn SOD cDNA under the control of the Drosophila actin 5c gene promoter. Adult flies of the resulting transformed lines which expressed both mammalian and Drosophila CuZn SOD were then used as a novel model for evaluating the role of oxygen radicals in aging. Our data show that expression of enzymatically active bovine SOD in Drosophila flies confers resistance to paraquat, an O2(-)-generating compound. This is consistent with data on adult mortality, because there was a slight but significant increase in the mean lifespan of several of the transgenic lines. The highest level of expression of the active enzyme in adults was 1.60 times the normal value. Higher levels may have led to the formation of toxic levels of H2O2 during development, since flies that died during the process of eclosion showed an unusual accumulation of lipofuscin (age pigment) in some of their cells. In conclusion, our data show that free-radical detoxification has a minor by positive effect on mean longevity for several strains.


1991 ◽  
Vol 11 (6) ◽  
pp. 2937-2945 ◽  
Author(s):  
E Martinez ◽  
Y Dusserre ◽  
W Wahli ◽  
N Mermod

Transcription initiation at eukaryotic protein-coding gene promoters is regulated by a complex interplay of site-specific DNA-binding proteins acting synergistically or antagonistically. Here, we have analyzed the mechanisms of synergistic transcriptional activation between members of the CCAAT-binding transcription factor/nuclear factor I (CTF/NF-I) family and the estrogen receptor. By using cotransfection experiments with HeLa cells, we show that the proline-rich transcriptional activation domain of CTF-1, when fused to the GAL4 DNA-binding domain, synergizes with each of the two estrogen receptor-activating regions. Cooperative DNA binding between the GAL4-CTF-1 fusion and the estrogen receptor does not occur in vitro, and in vivo competition experiments demonstrate that both activators can be specifically inhibited by the overexpression of a proline-rich competitor, indicating that a common limiting factor is mediating their transcriptional activation functions. Furthermore, the two activators functioning synergistically are much more resistant to competition than either factor alone, suggesting that synergism between CTF-1 and the estrogen receptor is the result of a stronger tethering of the limiting target factor(s) to the two promoter-bound activators.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1633
Author(s):  
Fabiola Urbina ◽  
Sebastián Morales-Pison ◽  
Edio Maldonado

Multi-subunit enzymes are protein biopolymers that are involved in many cellular processes. The enzyme that carries out the process of transcription of mRNAs is RNA polymerase II (RNAPII), which is a multi-subunit enzyme in eukaryotes. This protein biopolymer starts the transcription from specific sites and is positioned by transcription factors, which form a preinitiation complex (PIC) on gene promoters. To recognize and position the RNAPII and the transcription factors on the gene promoters are needed specific DNA sequences in the gene promoters, which are named promoter elements. Those gene promoter elements can vary and therefore several kinds of promoters exist, however, it appears that all promoters can use a similar pathway for PIC formation. Those pathways are discussed in this review. The in vitro transcribed mRNA can be used as vaccines to fight infectious diseases, e.g., in immunotherapy against cancer and in nanotechnology to deliver mRNA for a missing protein into the cell. We have outlined a procedure to produce an mRNA vaccine against the SARS-CoV-2 virus, which is the causing agent of the big pandemic, COVID-19, affecting human beings all over the world. The potential advantages of using eukaryotic RNAPII to synthetize large transcripts are outlined and discussed. In addition, we suggest a method to cap the mRNA at the 5′ terminus by using enzymes, which might be more effective than cap analogs. Finally, we suggest the construction of a future multi-talented RNAPII, which would be able to synthetize large mRNA and cap them in the test tube.


1995 ◽  
Vol 15 (2) ◽  
pp. 1014-1020 ◽  
Author(s):  
E Lam

Light is an important environmental signal that can influence diverse developmental processes in plants. Many plant nuclear genes respond to light at the level of transcription initiation. GT-1 and GT2 are nuclear factors which interact with DNA sequences in many light-responsive gene promoters. cDNA clones which encode proteins with sequence binding specificities similar to those of these two factors have been isolated. They show significant amino acid sequence similarities within three closely spaced, putative alpha-helices that were predicted by secondary structure analysis but do not show significant homologies with any other reported DNA-binding protein. In this work, N- and C-terminal deletions of tobacco GT1a were generated by in vitro transcription and translation, and their DNA-binding activities and subunit structures were studied. The results suggest that the C-terminal domain of GT1a is critical for protein oligomerization, while a region predicted to contain four closely spaced alpha-helices is required for DNA binding. Direct chemical cross-linking and gel filtration analyses of full-length and truncated derivatives of GT1a suggest that this factor can exist in solution as a homotetramer and that oligomerization is independent of DNA binding. This study thus establishes two independent functional domains in this class of eukaryotic trans-acting factors. Possible implications of the multimeric nature of GT1a in relation to the known characteristics of light-responsive promoter architecture are discussed.


2008 ◽  
Vol 74 (11) ◽  
pp. 3512-3522 ◽  
Author(s):  
Sudesh Pawaria ◽  
Amrita Lama ◽  
Manoj Raje ◽  
Kanak L. Dikshit

ABSTRACT The success of Mycobacterium tuberculosis as one of the dreaded human pathogens lies in its ability to utilize different defense mechanisms in response to the varied environmental challenges during the course of its intracellular infection, latency, and reactivation cycle. Truncated hemoglobins trHbN and trHbO are thought to play pivotal roles in the cellular metabolism of this organism during stress and hypoxia. To delineate the genetic regulation of the M. tuberculosis hemoglobins, transcriptional fusions of the promoters of the glbN and glbO genes with green fluorescent protein were constructed, and their responses were monitored in Mycobacterium smegmatis and M. tuberculosis H37Ra exposed to environmental stresses in vitro and in M. tuberculosis H37Ra after in vivo growth inside macrophages. The glbN promoter activity increased substantially during stationary phase and was nearly 3- to 3.5-fold higher than the activity of the glbO promoter, which remained more or less constant during different growth phases in M. smegmatis, as well as in M. tuberculosis H37Ra. In both mycobacterial hosts, the glbN promoter activity was induced 1.5- to 2-fold by the general nitrosative stress inducer, nitrite, as well as the NO releaser, sodium nitroprusside (SNP). The glbO promoter was more responsive to nitrite than to SNP, although the overall increase in its activity was much less than that of the glbN promoter. Additionally, the glbN promoter remained insensitive to the oxidative stress generated by H2O2, but the glbO promoter activity increased nearly 1.5-fold under similar conditions, suggesting that the trHb gene promoters are regulated differently under nitrosative and oxidative stress conditions. In contrast, transition metal-induced hypoxia enhanced the activity of both the glbN and glbO promoters at all growth phases; the glbO promoter was induced ∼2.3-fold, which was found to be the highest value for this promoter under all the conditions evaluated. Addition of iron along with nickel reversed the induction in both cases. Interestingly, a concentration-dependent decrease in the activity of both trHb gene promoters was observed when the levels of iron in the growth media were depleted by addition of an iron chelator. These results suggested that an iron/heme-containing oxygen sensor is involved in the modulation of the trHb gene promoter activities directly or indirectly in conjunction with other cellular factors. The modes of promoter regulation under different physiological conditions were found to be similar for the trHbs in both M. smegmatis and M. tuberculosis H37Ra, indicating that the promoters might be regulated by components that are common to the two systems. Confocal microscopy of THP-1 macrophages infected with M. tuberculosis carrying the trHb gene promoter fusions showed that there was a significant level of promoter activity during intracellular growth in macrophages. Time course evaluation of the promoter activity after various times up to 48 h by fluorescence-activated cell sorting analysis of the intracellular M. tuberculosis cells indicated that the glbN promoter was active at all time points assessed, whereas the activity of the glbO promoter remained at a steady-state level up to 24 h postinfection and increased ∼2-fold after 48 h of infection. Thus, the overall regulation pattern of the M. tuberculosis trHb gene promoters correlates not only with the stresses that the tubercle bacillus is likely to encounter once it is in the macrophage environment but also with our current knowledge of their functions. The in vivo studies that demonstrated for the first time expression of trHbs during macrophage infection of M. tuberculosis strongly indicate that the hemoglobins are required, and thus important, during the intracellular phase of the bacterial cycle. The present study of transcriptional regulation of M. tuberculosis hemoglobins in vitro under various stress conditions and in vivo after macrophage infection supports the hypothesis that biosynthesis of both trHbs (trHbN and trHbO) in the native host is regulated via the environmental signals that the tubercle bacillus receives during macrophage infection and growth in its human host.


1993 ◽  
Vol 13 (10) ◽  
pp. 6403-6415 ◽  
Author(s):  
S Connelly ◽  
W Filipowicz

Formation of the 3' ends of RNA polymerase II (Pol II)-specific U small nuclear RNAs (U snRNAs) in vertebrate cells is dependent upon transcription initiation from the U snRNA gene promoter. Moreover, U snRNA promoters are unable to direct the synthesis of functional polyadenylated mRNAs. In this work, we have investigated whether U snRNA 3'-end formation and transcription initiation are also coupled in plants. We have first characterized the requirements for 3'-end formation of an Arabidopsis U2 snRNA expressed in transfected protoplasts of Nicotiana plumbaginifolia. We found that the 3'-end-adjacent sequence CA (N)3-10AGTNNAA, conserved in plant Pol II-specific U snRNA genes, is essential for the 3'-end formation of U2 transcripts and, similar to the vertebrate 3' box, is highly tolerant to mutation. The 3'-flanking regions of an Arabidopsis U5 and a maize U2 snRNA gene can effectively substitute for the Arabidopsis U2 3'-end formation signal, indicating that these signals are functionally equivalent among different Pol II-transcribed snRNA genes. The plant U snRNA 3'-end formation signal can be recognized irrespective of whether transcription initiation occurs at U snRNA or mRNA gene promoters, although efficiency of 3' box utilization is higher when transcription initiation occurs at the U snRNA promoter. Moreover, transcripts initiated from the U2 gene promoter can be spliced and polyadenylated. Transcription from a Pol III-specific plant U snRNA gene promoter is not compatible with polyadenylation. Finally, we reveal that initiation at a Pol II-specific plant U snRNA gene promoter can occur in the absence of the snRNA coding region and a functional snRNA 3'-end formation signal, demonstrating that these sequences play no role in determining the RNA polymerase specificity of plant U snRNA genes.


1988 ◽  
Vol 8 (11) ◽  
pp. 4587-4597 ◽  
Author(s):  
J M Grichnik ◽  
B A French ◽  
R J Schwartz

The chicken skeletal alpha-actin gene promoter region (-202 to -12) provides myogenic transcriptional specificity. This promoter contains partial dyad symmetry about an axis at nucleotide -108 and in transfection experiments is capable of directing transcription in a bidirectional manner. At least three different transcription initiation start sites, oriented toward upstream sequences, were mapped 25 to 30 base pairs from TATA-like regions. The opposing transcriptional activity was potentiated upon the deletion of sequences proximal to the alpha-actin transcription start site. Thus, sequences which serve to position RNA polymerase for alpha-actin transcription may allow, in their absence, the selection of alternative and reverse-oriented start sites. Nuclear runoff transcription assays of embryonic muscle indicated that divergent transcription may occur in vivo but with rapid turnover of nuclear transcripts. Divergent transcriptional activity enabled us to define the 3' regulatory boundary of the skeletal alpha-actin promoter which retains a high level of myogenic transcriptional activity. The 3' regulatory border was detected when serial 3' deletions bisected the element (-91 CCAAA TATGG -82) which reduced transcriptional activity by 80%. Previously we showed that disruption of its upstream counterpart (-127 CCAAAGAAGG -136) resulted in about a 90% decrease in activity. These element pairs, which we describe as CCAAT box-associated repeats, are conserved in all sequenced vertebrate sarcomeric actin genes and may act in a cooperative manner to facilitate transcription in myogenic cells.


Sign in / Sign up

Export Citation Format

Share Document