Episome-generated N-myc antisense RNA restricts the differentiation potential of primitive neuroectodermal cell lines

1991 ◽  
Vol 11 (3) ◽  
pp. 1360-1371
Author(s):  
L Whitesell ◽  
A Rosolen ◽  
L M Neckers

Neuroectodermal tumors of childhood provide a unique opportunity to examine the role of genes potentially regulating neuronal growth and differentiation because many cell lines derived from these tumors are composed of at least two distinct morphologic cell types. These types display variant phenotypic characteristics and spontaneously interconvert, or transdifferentiate, in vitro. The factors that regulate transdifferentiation are unknown. Application of antisense approaches to the transdifferentiation process has allowed us to explore the precise role that N-myc may play in regulating developing systems. We now report construction of an episomally replicating expression vector designed to generate RNA antisense to part of the human N-myc gene. Such a vector is able to specifically inhibit N-myc expression in cell lines carrying both normal and amplified N-myc alleles. Inhibition of N-myc expression blocks transdifferentiation in these lines, with accumulation of cells of an intermediate phenotype. A concomitant decrease in growth rate but not loss of tumorigenicity was observed in the N-myc nonamplified cell line CHP-100. Vector-generated antisense RNA should allow identification of genes specifically regulated by the proto-oncogene N-myc.

1991 ◽  
Vol 11 (3) ◽  
pp. 1360-1371 ◽  
Author(s):  
L Whitesell ◽  
A Rosolen ◽  
L M Neckers

Neuroectodermal tumors of childhood provide a unique opportunity to examine the role of genes potentially regulating neuronal growth and differentiation because many cell lines derived from these tumors are composed of at least two distinct morphologic cell types. These types display variant phenotypic characteristics and spontaneously interconvert, or transdifferentiate, in vitro. The factors that regulate transdifferentiation are unknown. Application of antisense approaches to the transdifferentiation process has allowed us to explore the precise role that N-myc may play in regulating developing systems. We now report construction of an episomally replicating expression vector designed to generate RNA antisense to part of the human N-myc gene. Such a vector is able to specifically inhibit N-myc expression in cell lines carrying both normal and amplified N-myc alleles. Inhibition of N-myc expression blocks transdifferentiation in these lines, with accumulation of cells of an intermediate phenotype. A concomitant decrease in growth rate but not loss of tumorigenicity was observed in the N-myc nonamplified cell line CHP-100. Vector-generated antisense RNA should allow identification of genes specifically regulated by the proto-oncogene N-myc.


2020 ◽  
Author(s):  
Shubham Haribhau Mehatre ◽  
Irene Mariam Roy ◽  
Atreyi Biswas ◽  
Devila Prit ◽  
Sarah Schouteden ◽  
...  

AbstractOutside-in integrin signaling regulates cell fate decisions in a variety of cell types, including hematopoietic stem cells (HSCs). Our earlier published studies showed that interruption of Periostin (POSTN) and Integrin-αv (ITGAV) interaction induces faster proliferation in HSCs with developmental stage dependent functional effects. Here, we examined the role of POSTN-ITGAV axis in lympho-hematopoietic activity in spleen that hosts rare population of HSCs, the functional regulation of which is not clearly known. Vav-iCre mediated deletion of Itgav in hematopoietic system led to higher proliferation rates, resulting in increased frequency of primitive HSCs in adult spleen. However, in vitro CFU-C assays demonstrated a poorer differentiation potential following Itgav deletion. This also led to a decrease in the white pulp area with a significant decline in the B-cell numbers. Systemic deletion of its ligand, POSTN, phenocopied the effects noted in Vav-Itgav−/− mice. Histological examination of Postn deficient spleen also showed increase in the spleen trabecular areas. Surprisingly, these were the myofibroblasts of the trabecular and capsular areas that expressed high levels of POSTN within the spleen tissue. In addition, vascular smooth muscle cells also expressed POSTN. Through CFU-S12 assays, we showed that hematopoietic support potential of stroma in Postn deficient splenic hematopoietic niche was defective. Overall, we demonstrate that POSTN-ITGAV interaction plays important role in spleen lympho-hematopoiesis.


1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.


Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
Wenfang Zheng ◽  
...  

Abstract Background Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown. Here we aim to evaluate the role of hsa_circ_0005273 in BC. Methods The expression level of hsa_circ_0005273 and miR-200a-3p were examined by RT-qPCR in BC tissues and cell lines. The effect of knocking down hsa_circ_0005273 in BC cell lines were evaluated by examinations of cell proliferation, migration and cell cycle. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. RNA immunoprecipitation assay, RNA probe pull-down assay, luciferase reporter assay and fluorescence in situ hybridization were conducted to confirm the relationship between hsa_circ_0005273, miR-200a-3p and YAP1. Results Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of hsa_circ_0005273 inhibited the progression of BC cells in vitro and in vivo, while overexpression of hsa_circ_0005273 exhibited the opposite effect. Importantly, hsa_circ_0005273 upregulated YAP1 expression and inactivated Hippo pathway via sponging miR-200a-3p to promote BC progression. Conclusions Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and inactivates Hippo signaling pathway to promote BC progression, which may become a potential biomarker and therapeutic target.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Theresa Weickert ◽  
Judith S. Hecker ◽  
Michèle C. Buck ◽  
Christina Schreck ◽  
Jennifer Rivière ◽  
...  

AbstractMyelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1870
Author(s):  
Klaudia Skrzypek ◽  
Grażyna Adamek ◽  
Marta Kot ◽  
Bogna Badyra ◽  
Marcin Majka

Rhabdomyosarcoma (RMS), is the most frequent soft tissue tumor in children that originates from disturbances in differentiation process. Mechanisms leading to the development of RMS are still poorly understood. Therefore, by analysis of two RMS RH30 cell line subclones, one subclone PAX7 negative, while the second one PAX7 positive, and comparison with other RMS cell lines we aimed at identifying new mechanisms crucial for RMS progression. RH30 subclones were characterized by the same STR profile, but different morphology, rate of proliferation, migration activity and chemotactic abilities in vitro, as well as differences in tumor morphology and growth in vivo. Our analysis indicated a different level of expression of adhesion molecules (e.g., from VLA and ICAM families), myogenic microRNAs, such as miR-206 and transcription factors, such as MYOD, MYOG, SIX1, and ID. Silencing of PAX7 transcription factor with siRNA confirmed the crucial role of PAX7 transcription factor in proliferation, differentiation and migration of RMS cells. To conclude, our results suggest that tumor cell lines with the same STR profile can produce subclones that differ in many features and indicate crucial roles of PAX7 and ID proteins in the development of RMS.


1998 ◽  
Vol 26 (1) ◽  
pp. 1-12 ◽  
Author(s):  
H Saito ◽  
T Yanaihara

For preventing the reduction of bone mass in post-menopausal women, oestrogen replacement is known to be useful and the importance of sex steroids in bone metabolism in both sexes is well established. The presence of steroid-converting-enzyme activities in various osteoblast and osteoblast-like cells has been demonstrated using in vitro culture systems. In the present study, we assessed the expression of messenger ribonucleic acid (mRNA) for aromatase, steroid sulphatase, 5α-reductase, 17β-hydroxysteroid dehydrogenase (17β-HSD) and 3β-HSD by reverse transcription-polymerase chain reaction in the human osteoblast-like cell lines, MG 63 and HOS. Oestrogen, androgen and progesterone receptor mRNAs were also measured. Expression of mRNA for these enzymes and receptors was found in both cell lines without induction. From these and previous findings, we conclude that osteoblast-like cells have the capacity to form biologically potent oestrogens and androgens from peripheral circulating steroids. This may indicate an important role of bone in facilitating hormonal action.


2004 ◽  
Vol 167 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Brenton L. Scott ◽  
Jeffrey S. Van Komen ◽  
Hassan Irshad ◽  
Song Liu ◽  
Kirilee A. Wilson ◽  
...  

Sec1 proteins are critical players in membrane trafficking, yet their precise role remains unknown. We have examined the role of Sec1p in the regulation of post-Golgi secretion in Saccharomyces cerevisiae. Indirect immunofluorescence shows that endogenous Sec1p is found primarily at the bud neck in newly budded cells and in patches broadly distributed within the plasma membrane in unbudded cells. Recombinant Sec1p binds strongly to the t-SNARE complex (Sso1p/Sec9c) as well as to the fully assembled ternary SNARE complex (Sso1p/Sec9c;Snc2p), but also binds weakly to free Sso1p. We used recombinant Sec1p to test Sec1p function using a well-characterized SNARE-mediated membrane fusion assay. The addition of Sec1p to a traditional in vitro fusion assay moderately stimulates fusion; however, when Sec1p is allowed to bind to SNAREs before reconstitution, significantly more Sec1p binding is detected and fusion is stimulated in a concentration-dependent manner. These data strongly argue that Sec1p directly stimulates SNARE-mediated membrane fusion.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Tanzeela Awan ◽  
Aaron Babendreyer ◽  
Justyna Wozniak ◽  
Abid Mahmood Alvi ◽  
Viktor Sterzer ◽  
...  

Acute and chronic liver inflammation is driven by cytokine and chemokine release from various cell types in the liver. Here, we report that the induction of inflammatory mediators is associated with a yet undescribed upregulation of the metalloproteinase ADAM8 in different murine hepatitis models. We further show the importance of ADAM8 expression for the production of inflammatory mediators in cultured liver cells. As a model of acute inflammation, we investigated liver tissue from lipopolysaccharide- (LPS-) treated mice in which ADAM8 expression was markedly upregulated compared to control mice. In vitro, stimulation with LPS enhanced ADAM8 expression in murine and human endothelial and hepatoma cell lines as well as in primary murine hepatocytes. The enhanced ADAM8 expression was associated with an upregulation of TNF-α and IL-6 expression and release. Inhibition studies indicate that the cytokine response of hepatoma cells to LPS depends on the activity of ADAM8 and that signalling by TNF-α can contribute to these ADAM8-dependent effects. The role of ADAM8 was further confirmed with primary hepatocytes from ADAM8 knockout mice in which TNF-α and IL-6 induction and release were considerably attenuated. As a model of chronic liver injury, we studied liver tissue from mice undergoing high-fat diet-induced steatohepatitis and again observed upregulation of ADAM8 mRNA expression compared to healthy controls. In vitro, ADAM8 expression was upregulated in hepatoma, endothelial, and stellate cell lines by various mediators of steatohepatitis including fatty acid (linoleic-oleic acid), IL-1β, TNF-α, IFN-γ, and TGF-β. Upregulation of ADAM8 was associated with the induction and release of proinflammatory cytokines (TNF-α and IL-6) and chemokines (CX3CL1). Finally, knockdown of ADAM8 expression in all tested cell types attenuated the release of these mediators. Thus, ADAM8 is upregulated in acute and chronic liver inflammation and is able to promote inflammation by enhancing expression and release of inflammatory mediators.


2020 ◽  
Vol 134 (8) ◽  
pp. 1001-1025 ◽  
Author(s):  
Sonya Frazier ◽  
Martin W. McBride ◽  
Helen Mulvana ◽  
Delyth Graham

Abstract Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.


Sign in / Sign up

Export Citation Format

Share Document