scholarly journals The mammalian transcriptional repressor RBP (CBF1) regulates interleukin-6 gene expression.

1997 ◽  
Vol 17 (1) ◽  
pp. 1-9 ◽  
Author(s):  
C Kannabiran ◽  
X Zeng ◽  
L D Vales

The cellular interleukin-6 (IL-6) gene contains a target site for the mammalian transcriptional repressor RBP. The target site is contained within the interleukin response element (ILRE), which mediates IL-6 activation by NF-kappa B. In this study, we show by using transient-expression assays that RBP represses activated transcription from the IL-6 gene. The presence and position of the RBP target site are crucial in mediating repression by RBP. While RBP binds within the ILRE, it does not target NF-kappa B alone; nonetheless, NF-kappa B binding to the ILRE is required for repression. Our results indicate that RBP represses coactivation by NF-kappa B and another cellular transcription factor, C/EBP-beta.

1990 ◽  
Vol 10 (2) ◽  
pp. 561-568
Author(s):  
H Shimizu ◽  
K Mitomo ◽  
T Watanabe ◽  
S Okamoto ◽  
K Yamamoto

Interleukin-6 (IL-6) is one of the major mediators of inflammation, and its expression is inducible by the other inflammatory lymphokines, interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha). We demonstrate that a common IL-6 promoter element, termed inflammatory lymphokine-responsive element (ILRE), is important for induction of IL-6 gene expression by IL-1 and TNF-alpha despite possible differences in the mechanisms of action of these lymphokines. Remarkably, the ILRE sequence, located between -73 to -63 relative to the mRNA cap site, is highly homologous to NF-kappa B transcription factor-binding motifs and binds an IL-1-TNF-alpha-inducible nuclear factor; the sequence specificities, binding characteristics, and subcellular localizations of this factor are indistinguishable from those of NF-kappa B. In addition, mutations of the ILRE sequence which impair the binding of this nuclear factor abolished the induction of IL-6 gene expression by IL-1 and TNF-alpha in vivo. These results indicate that a nuclear factor indistinguishable from NF-kappa B is involved in the transcriptional activation of the IL-6 gene by IL-1 and TNF-alpha.


2021 ◽  
Vol 17 (2) ◽  
pp. e1009364
Author(s):  
James W. Bruce ◽  
Megan Bracken ◽  
Edward Evans ◽  
Nathan Sherer ◽  
Paul Ahlquist

Previously, we reported that cellular transcription factor ZASC1 facilitates DNA-dependent/RNA-independent recruitment of HIV-1 TAT and the cellular elongation factor P-TEFb to the HIV-1 promoter and is a critical factor in regulating HIV-1 transcriptional elongation (PLoS Path e1003712). Here we report that cellular transcription factor ZBTB2 is a novel repressor of HIV-1 gene expression. ZBTB2 strongly co-immunoprecipitated with ZASC1 and was dramatically relocalized by ZASC1 from the cytoplasm to the nucleus. Mutations abolishing ZASC1/ZBTB2 interaction prevented ZBTB2 nuclear relocalization. We show that ZBTB2-induced repression depends on interaction of cellular histone deacetylases (HDACs) with the ZBTB2 POZ domain. Further, ZASC1 interaction specifically recruited ZBTB2 to the HIV-1 promoter, resulting in histone deacetylation and transcription repression. Depleting ZBTB2 by siRNA knockdown or CRISPR/CAS9 knockout in T cell lines enhanced transcription from HIV-1 vectors lacking Vpr, but not from these vectors expressing Vpr. Since HIV-1 Vpr activates the viral LTR by inducing the ATR kinase/DNA damage response pathway, we investigated ZBTB2 response to Vpr and DNA damaging agents. Expressing Vpr or stimulating the ATR pathway with DNA damaging agents impaired ZASC1’s ability to localize ZBTB2 to the nucleus. Moreover, the effects of DNA damaging agents and Vpr on ZBTB2 localization could be blocked by ATR kinase inhibitors. Critically, Vpr and DNA damaging agents decreased ZBTB2 binding to the HIV-1 promoter and increased promoter histone acetylation. Thus, ZBTB2 is recruited to the HIV-1 promoter by ZASC1 and represses transcription, but ATR pathway activation leads to ZBTB2 removal from the promoter, cytoplasmic sequestration and activation of viral transcription. Together, our data show that ZASC1/ZBTB2 integrate the functions of TAT and Vpr to maximize HIV-1 gene expression.


2010 ◽  
Vol 84 (15) ◽  
pp. 7473-7483 ◽  
Author(s):  
James W. Bruce ◽  
Michael Hierl ◽  
John A. T. Young ◽  
Paul Ahlquist

ABSTRACT To identify cellular processes involved in retroviral infection, we employed a high-volume forward genetic screen of insertionally mutagenized somatic cells using a murine leukemia virus (MLV) vector. This approach identified a clonal cell line that exhibited approximately 10-fold reduced gene expression from MLV vectors following infection despite supporting normal levels of MLV reverse transcription and integration. The defect in this cell line was specific for the MLV long terminal repeat (LTR) promoter, as normal levels of reporter gene expression were obtained from both an internal cytomegalovirus (CMV) promoter contained within an LTR-defective MLV vector and LTR expression from an avian sarcoma and leukosis virus (ASLV) vector. Complementation and shRNA knockdown experiments demonstrated that the defective gene in these cells is ZASC1 (ZNF639), a transcription factor with strong links to cancer and inherited ataxias. We demonstrated that ZASC1 is a sequence-specific DNA binding protein with three closely related binding sites located within the MLV LTR promoter, but it does not bind to the ASLV promoter. Mutating these putative ZASC1 binding sites significantly reduced levels of MLV gene expression. While wild-type ZASC1 activated expression from the MLV promoter, a green fluorescent protein-ZASC1 fusion protein showed dominant-negative inhibition of MLV gene expression. These studies identify the cellular transcription factor ZASC1 as an activator of MLV gene expression and provide tools that should be useful in studying the links between ZASC1 and human diseases.


Virology ◽  
2007 ◽  
Vol 365 (2) ◽  
pp. 324-335 ◽  
Author(s):  
Xue Zhang ◽  
Kailang Wu ◽  
Di Wang ◽  
Xin Yue ◽  
Degui Song ◽  
...  

1990 ◽  
Vol 10 (2) ◽  
pp. 561-568 ◽  
Author(s):  
H Shimizu ◽  
K Mitomo ◽  
T Watanabe ◽  
S Okamoto ◽  
K Yamamoto

Interleukin-6 (IL-6) is one of the major mediators of inflammation, and its expression is inducible by the other inflammatory lymphokines, interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha). We demonstrate that a common IL-6 promoter element, termed inflammatory lymphokine-responsive element (ILRE), is important for induction of IL-6 gene expression by IL-1 and TNF-alpha despite possible differences in the mechanisms of action of these lymphokines. Remarkably, the ILRE sequence, located between -73 to -63 relative to the mRNA cap site, is highly homologous to NF-kappa B transcription factor-binding motifs and binds an IL-1-TNF-alpha-inducible nuclear factor; the sequence specificities, binding characteristics, and subcellular localizations of this factor are indistinguishable from those of NF-kappa B. In addition, mutations of the ILRE sequence which impair the binding of this nuclear factor abolished the induction of IL-6 gene expression by IL-1 and TNF-alpha in vivo. These results indicate that a nuclear factor indistinguishable from NF-kappa B is involved in the transcriptional activation of the IL-6 gene by IL-1 and TNF-alpha.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


Sign in / Sign up

Export Citation Format

Share Document