scholarly journals Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability.

1997 ◽  
Vol 17 (1) ◽  
pp. 460-468 ◽  
Author(s):  
M H Kubbutat ◽  
K H Vousden

The p53 tumor suppressor protein is activated in cells in response to DNA damage and prevents the replication of cells sustaining genetic damage by inducing a cell cycle arrest or apoptosis. Activation of p53 is accompanied by stabilization of the protein, resulting in accumulation to high levels within the cell. p53 is normally degraded through the proteasome following ubiquitination, although the mechanisms which regulate this proteolysis in normal cells and how the p53 protein becomes stabilized following DNA damage are not well understood. We show here that p53 can also be a substrate for cleavage by the calcium-activated neutral protease, calpain, and that a preferential site for calpain cleavage exists within the N terminus of the p53 protein. Treatment of cells expressing wild-type p53 with an inhibitor of calpain resulted in the stabilization of the p53 protein. By contrast, in vitro or in vivo degradation mediated by human papillomavirus E6 protein was unaffected by the calpain inhibitor, indicating that the stabilization did not result from inhibition of the proteasome. These results suggest that calpain cleavage plays a role in regulating p53 stability.

2000 ◽  
Vol 14 (3) ◽  
pp. 278-288 ◽  
Author(s):  
Nabil H. Chehab ◽  
Asra Malikzay ◽  
Michael Appel ◽  
Thanos D. Halazonetis

Chk2/hcds1, the human homolog of theSaccharomyces cerevisiae RAD53/SPK1 andSchizosaccharomyces pombe cds1 DNA damage checkpoint genes, encodes a protein kinase that is post-translationally modified after DNA damage. Like its yeast homologs, the Chk2/hCds1 protein phosphorylates Cdc25C in vitro, suggesting that it arrests cells in G2 in response to DNA damage. We expressed Chk2/hCds1 in human cells and analyzed their cell cycle profile. Wild-type, but not catalytically inactive, Chk2/hCds1 led to G1 arrest after DNA damage. The arrest was inhibited by cotransfection of a dominant-negative p53 mutant, indicating that Chk2/hCds1 acted upstream of p53. In vitro, Chk2/hCds1 phosphorylated p53 on Ser-20 and dissociated preformed complexes of p53 with Mdm2, a protein that targets p53 for degradation. In vivo, ectopic expression of wild-type Chk2/hCds1 led to increased p53 stabilization after DNA damage, whereas expression of a dominant-negative Chk2/hCds1 mutant abrogated both phosphorylation of p53 on Ser-20 and p53 stabilization. Thus, in response to DNA damage, Chk2/hCds1 stabilizes the p53 tumor suppressor protein leading to cell cycle arrest in G1.


2019 ◽  
Vol 19 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Yang Liu ◽  
Jingyin Zhang ◽  
Shuyun Feng ◽  
Tingli Zhao ◽  
Zhengzheng Li ◽  
...  

Objective: The aim of this study is to investigate the inhibitory effect of camptothecin derivative 3j on Non-Small Cell Lung Cancer (NSCLCs) cells and the potential anti-tumor mechanisms. Background: Camptothecin compounds are considered as the third largest natural drugs which are widely investigated in the world and they suffered restriction because of serious toxicity, such as hemorrhagic cystitis and bone marrow suppression. Methods: Using cell proliferation assay and S180 tumor mice model, a series of 20(S)-O-substituted benzoyl 7- ethylcamptothecin compounds were screened and evaluated the antitumor activities in vitro and in vivo. Camptothecin derivative 3j was selected for further study using flow cytometry in NSCLCs cells. Cell cycle related protein cyclin A2, CDK2, cyclin D and cyclin E were detected by Western Blot. Then, computer molecular docking was used to confirm the interaction between 3j and Topo I. Also, DNA relaxation assay and alkaline comet assay were used to investigate the mechanism of 3j on DNA damage. Results: Our results demonstrated that camptothecin derivative 3j showed a greater antitumor effect in eleven 20(S)-O-substituted benzoyl 7-ethylcamptothecin compounds in vitro and in vivo. The IC50 of 3j was 1.54± 0.41 µM lower than irinotecan with an IC50 of 13.86±0.80 µM in NCI-H460 cell, which was reduced by 8 fold. In NCI-H1975 cell, the IC50 of 3j was 1.87±0.23 µM lower than irinotecan (IC50±SD, 5.35±0.38 µM), dropped by 1.8 fold. Flow cytometry analysis revealed that 3j induced significant accumulation in a dose-dependent manner. After 24h of 3j (10 µM) treatment, the percentage of NCI-H460 cell in S-phase significantly increased (to 93.54 ± 4.4%) compared with control cells (31.67 ± 3.4%). Similarly, the percentage of NCI-H1975 cell in Sphase significantly increased (to 83.99 ± 2.4%) compared with control cells (34.45 ± 3.9%) after treatment with 10µM of 3j. Moreover, increased levels of cyclin A2, CDK2, and decreased levels of cyclin D, cyclin E further confirmed that cell cycle arrest was induced by 3j. Furthermore, molecular docking studies suggested that 3j interacted with Topo I-DNA and DNA-relaxation assay simultaneously confirmed that 3j suppressed the activity of Topo I. Research on the mechanism showed that 3j exhibited anti-tumour activity via activating the DNA damage response pathway and suppressing the repair pathway in NSCLC cells. Conclusion: Novel camptothecin derivative 3j has been demonstrated as a promising antitumor agent and remains to be assessed in further studies.


2016 ◽  
Vol 13 (114) ◽  
pp. 20150679 ◽  
Author(s):  
Philip J. Murray ◽  
Bart Cornelissen ◽  
Katherine A. Vallis ◽  
S. Jon Chapman

DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γ H2AX. Many copies of γ H2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti- γ H2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo . Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, 111 In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti- γ H2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti- γ H2AX-TAT and γ H2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti- γ H2AX antibody is labelled with Auger electron-emitting 111 In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti- γ H2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti- γ H2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage accumulation in the presence of Auger electron-emitting 111 In that is supported qualitatively by the available experimental data.


Author(s):  
Xiao Xue Ke ◽  
Rui Zhang ◽  
Xi Zhong ◽  
Lei Zhang ◽  
Hongjuan Cui

Glioblastoma is an aggressive and difficult to treat cancer. Recent data have emerged implicating that histone modification level may play a crucial role in glioma genesis. The histone lysine methyltransferase G9a is mainly responsible for the mono- and di-methylation of histone H3 lysine 9 (H3K9), whose overexpression is associated with a more aggressive phenotype in cancer. However, the detailed correlations between G9a and glioblastoma genesis remain to be further elucidated. Here, we show that G9a is essential for glioblastoma carcinogenesis and reveal a probable mechanism of it in cell proliferation control. We found that G9a was highly expressed in glioblastoma cells, and knockdown or inhibition of G9a significantly repressed cell proliferation and tumorigenesis ability both in vitro and in vivo. Besides, knockdown or inhibition of G9a led to a cell cycle arrest in G2 phase, as well as decreased the expression of CDK1, CDK2, Cyclin A2, and Cyclin B1, while it induced the activation of autophagy. Further investigation showed that G9a deficiency induced cell proliferation suppression, and activation of autophagy was rescued by overexpression of the full-length c-Myc. Chromatin immunoprecipitation (ChIP) assay showed that G9a was enriched on the −2267 to −1949 region of the c-Myc promoter in LN-229 cells and the −1949 to −1630 region of the c-Myc promoter in U-87 MG cells. Dual-luciferase reporter assay showed that c-Myc promoter activity was significantly reduced after knockdown or inhibition of G9a. Our study shows that G9a controls glioblastoma cell proliferation by transcriptionally modulating oncogene c-Myc and provides insight into the capabilities of G9a working as a potential therapeutic target in glioblastoma.


2016 ◽  
Vol 42 (4) ◽  
pp. 997-1005 ◽  
Author(s):  
Shi-Jun Zhao ◽  
Xian-Jun Wang ◽  
Qing-Jian Wu ◽  
Chao Liu ◽  
Da-Wei Li ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 704
Author(s):  
Regina Mirgayazova ◽  
Raniya Khadiullina ◽  
Vitaly Chasov ◽  
Rimma Mingaleeva ◽  
Regina Miftakhova ◽  
...  

The TP53 gene encodes the transcription factor and oncosuppressor p53 protein that regulates a multitude of intracellular metabolic pathways involved in DNA damage repair, cell cycle arrest, apoptosis, and senescence. In many cases, alterations (e.g., mutations of the TP53 gene) negatively affect these pathways resulting in tumor development. Recent advances in genome manipulation technologies, CRISPR/Cas9, in particular, brought us closer to therapeutic gene editing for the treatment of cancer and hereditary diseases. Genome-editing therapies for blood disorders, blindness, and cancer are currently being evaluated in clinical trials. Eventually CRISPR/Cas9 technology is expected to target TP53 as the most mutated gene in all types of cancers. A majority of TP53 mutations are missense which brings immense opportunities for the CRISPR/Cas9 system that has been successfully used for correcting single nucleotides in various models, both in vitro and in vivo. In this review, we highlight the recent clinical applications of CRISPR/Cas9 technology for therapeutic genome editing and discuss its perspectives for editing TP53 and regulating transcription of p53 pathway genes.


2020 ◽  
Author(s):  
Feng Li ◽  
Tsz Y. Lo ◽  
Leann Miles ◽  
Qin Wang ◽  
Dan Li ◽  
...  

ABSTRACTAtr is a serine/threonine kinase, known to sense single-stranded DNA breaks and activate the DNA damage checkpoint by phosphorylating Chek1, which inhibits Cdc25, causing cell cycle arrest. This pathway has not been implicated in neuroregeneration. We show that in Drosophila sensory neurons, removing Atr or Chek1, or overexpressing Cdc25 promotes regeneration, whereas Atr or Chek1 overexpression, or Cdc25 knockdown impedes regeneration. Inhibiting the Atr-associated checkpoint complex in neurons promotes regeneration and improves synapse/behavioral recovery after CNS injury. Independent of DNA damage, Atr responds to the mechanical stimulus elicited during regeneration, via the mechanosensitive ion channel Piezo and its downstream NO signaling. Sensory neuron-specific knockout of Atr in adult mice, or pharmacological inhibition of Atr-Chek1 in mammalian neurons in vitro and in flies in vivo enhance regeneration. Our findings reveal the Piezo-Atr-Chek1-Cdc25 axis as an evolutionarily conserved inhibitory mechanism for regeneration, and identify potential therapeutic targets for treating nervous system trauma.


2019 ◽  
Author(s):  
Hardeep Kaur ◽  
GN Krishnaprasad ◽  
Michael Lichten

AbstractIn Saccharomyces cerevisiae, the conserved Sgs1-Top3-Rmi1 helicase-decatenase regulates homologous recombination by limiting accumulation of recombination intermediates that are precursors of crossovers. In vitro studies have suggested that the dissolution of double-Holliday junction joint molecules by Sgs1-driven convergent junction migration and Top3-Rmi1 mediated strand decatenation could be responsible for this. To ask if dissolution occurs in vivo, we conditionally depleted Sgs1 and/or Rmi1 during return to growth, a procedure where recombination intermediates formed during meiosis are resolved when cells resume the mitotic cell cycle. Sgs1 depletion during return to growth delayed joint molecule resolution, but ultimately most were resolved and cells divided normally. In contrast, Rmi1 depletion resulted in delayed and incomplete joint molecule resolution, and most cells did not divide. rad9Δ mutation restored cell division in Rmi1-depleted cells, indicating that the DNA damage checkpoint caused this cell cycle arrest. Restored cell division in rad9Δ, Rmi1-depleted cells frequently produced anucleate cells, consistent with the suggestion that persistent recombination intermediates prevented chromosome segregation. Our findings indicate that Sgs1-Top3-Rmi1 acts in vivo, as it does in vitro, to promote recombination intermediate resolution by dissolution. They also indicate that, in the absence of Top3-Rmi1 activity, unresolved recombination intermediates persist and activate the DNA damage response, which is usually thought to be activated by much earlier DNA damage-associated lesions.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 3045-3045 ◽  
Author(s):  
G. A. McArthur ◽  
J. Raleigh ◽  
A. Blasina ◽  
C. Cullinane ◽  
D. Dorow ◽  
...  

3045 Background: The development of strategies to monitor the molecular and cellular response to novel agents that target the cell cycle is vital to provide proof of mechanism and biological activity of these compounds. The protein kinase CHK1 is activated following DNA damage in the S and G2-phases of the cell cycle and mediates cell cycle arrest. In vitro studies demonstrate that inhibition of CHK1 can overcome cell cycle arrest induced by DNA damage and enhance cytotoxic activity of DNA damaging agents. In vivo studies show that combining DNA damaging agents with a CHK1 inhibitor potentiates antitumor activity. We hypothesize that functional imaging with 18F-fluorine-L-thymidine (FLT), a PET-tracer where tumor uptake is maximal in the S and G2 phases of the cell cycle can be used to non-invasively monitor the induction and therapeutic inhibition of a cell cycle checkpoint in vivo. Methods: Nude mice harbouring PC-3 xenografts were treated with vehicle controls, gemcitabine, the CHK1-inhibitor PF-477736 or gemcitabine + PF-477736. FLT-PET scans were performed and tumors harvested for ex-vivo biomarkers to assess S-phase, M-phase and DNA-repair. Results: Gemcitabine induced a 8.3 ±0.8 fold increase in tumoral uptake of FLT at 21 hours that correlated with a 3.3 ±0.2-fold increase in thymidine kinase activity and S-phase arrest as demonstrated by BrdU incorporation and elevated expression of cyclin-A. Treatment with PF-477736 at 17 hours after gemcitabine abrogated the early FLT-flare at 21 hours by 82% (p<0.001). This was associated with both an increased fraction of cells in mitosis and G1-phase of the cell cycle as determined by phos-histone H3 and flow cytometry. Furthermore, the combination of gemcitabine and PF-477736 enhanced DNA damage as measured by phos-gamma-H2AX and significantly delayed tumor growth when compared to tumors treated with gemcitabine alone. Conclusion: These data clearly indicate that the CHK1-inhibitor PF-477736 can overcome the cell cycle checkpoint induced by gemcitabine and increase associated DNA damage in tumors in-vivo. The PET studies indicate that functional imaging with FLT-PET is a promising strategy to monitor responses to therapeutic agents that target cell cycle checkpoints. [Table: see text]


2017 ◽  
Vol 44 (5) ◽  
pp. 2042-2056 ◽  
Author(s):  
Ye Gao ◽  
Pan Wang ◽  
Yaqin Wang ◽  
Lijie Wu ◽  
Xiaobing Wang ◽  
...  

Background/Aims: Non-toxic fomitopsis is has been traditionally used in folk medicine in many countries for its anti-inflammatory and anti-vascular disease activities. The present study investigates the antitumor effect of Fomitopsis pinicola (Sw. Ex Fr.) Karst chloroform extract (FPKc) on S180 tumor cells in vitro and in vivo and we determined the underlying mechanisms. Methods: HPLC was employed to analyze the constituents of FPKc. In-vitro 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to quantify the growth inhibition of FPKc; Propidium iodide (PI) exclusion assay and scanning electron microscopy (SEM) were used to observe the damage on the cell membrane and the changes of the cell morphology; Staining with Hoechst 33342/propidium iodide (HO/PI) and the application of the Annexin V-FITC/PI analysis permitted to observe the cell death triggered by FPKc; DNA damage and cell cycle arrest were detected by flow cytometry; Rhodamine 123 (RH123) and Cytochrome C were used as dyes to investigate the alterations of the mitochondria. In-vivo tumor inhibition and mice survival time were determined. Results: The results of the HPLC assay indicated that FPKc might contain DA (dehydroeburiconic acid), PA (pachymic acid), and ES (ergosterol), at percentages of 0.25%, 17.8%, and 10.5%, respectively. Concerning the study of the biological function, the results showed that FPKc exhibited preferential and significant suppression of proliferation on specific cell lines including S180, HL-60, U937, K562, SMMC-7721, and Eca-109 cells, which induced plasma membrane and cell morphology damages, triggering S180 tumor-cells late apoptosis and leading to DNA damage and S phase arrest. Mitochondria were suspected to play a vital role in these changes. In vivo data indicated that FPKc inhibited the solid tumor growth and prolonged the survival time of tumor-bearing mice. Moreover, FPKc provoked only little damage on normal cells in vitro and also on normal tissues in vivo. Conclusion: FPKc inhibited S180 tumor cells growth and prolonged the lifespan of mice. In vitro, we found that FPKc induced S180 tumor cells apoptosis and cell cycle arrest, possibly via the mitochondrial pathway.


Sign in / Sign up

Export Citation Format

Share Document