scholarly journals Regulation of Id3 cell cycle function by Cdk-2-dependent phosphorylation.

1997 ◽  
Vol 17 (12) ◽  
pp. 6815-6821 ◽  
Author(s):  
R W Deed ◽  
E Hara ◽  
G T Atherton ◽  
G Peters ◽  
J D Norton

The functions of basic helix-loop-helix (bHLH) transcription factors in activating differentiation-linked gene expression and in inducing G1 cell cycle arrest are negatively regulated by members of the Id family of HLH proteins. These bHLH antagonists are induced during a mitogenic signalling response, and they function by sequestering their bHLH targets in inactive heterodimers that are unable to bind to specific gene regulatory (E box) sequences. Recently, cyclin E-Cdk2- and cyclin A-Cdk2-dependent phosphorylation of a single conserved serine residue (Ser5) in Id2 has been shown to occur during late G1-to-S phase transition of the cell cycle, and this neutralizes the function of Id2 in abrogating E-box-dependent bHLH homo- or heterodimer complex formation in vitro (E. Hara, M. Hall, and G. Peters, EMBO J. 16:332-342, 1997). We now show that an analogous cell-cycle-regulated phosphorylation of Id3 alters the specificity of Id3 for abrogating both E-box-dependent bHLH homo- or heterodimer complex formation in vitro and E-box-dependent reporter gene function in vivo. Furthermore, compared with wild-type Id3, an Id3 Asp5 mutant (mimicking phosphorylation) is unable to promote cell cycle S phase entry in transfected fibroblasts, whereas an Id3 Ala5 mutant (ablating phosphorylation) displays an activity significantly greater than that of wild-type Id3 protein. Cdk2-dependent phosphorylation therefore provides a switch during late G1-to-S phase that both nullifies an early G1 cell cycle regulatory function of Id3 and modulates its target bHLH specificity. These data also demonstrate that the ability of Id3 to promote cell cycle S phase entry is not simply a function of its ability to modulate bHLH heterodimer-dependent gene expression and establish a biologically important mechanism through which Cdk2 and Id-bHLH functions are integrated in the coordination of cell proliferation and differentiation.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1544-1544
Author(s):  
Salvador Carrillo-Tornel ◽  
Tzu Hua Chen-Liang ◽  
María Zurdo ◽  
Anna Puiggros ◽  
Andrea Gómez-Llonín ◽  
...  

Abstract Introduction: The partially understood biological consequences of the NOTCH1 acquired lesion, seems to be distinctive enough among chronic lymphocytic leukemia (CLL) patients, as clinical studies have repeatedly found specific features: intermediate prognosis, anti-CD20 poorer responses, and a higher frequency of trisomy 12 and Richter transformation. Though located in a different domain, the activating nature of NOTCH1 mutation in T lymphoblastic leukemia relies on cell cycle regulators. In fact, pivotal studies, from the pre-next generation sequencing era, showed dysregulation of cyclins-gene expression, as driver of the unique CLL features. Thus, our goal was to revisit the cell cycle in CLL, but focusing now in the NOTCH1 mutated subset (NOTCH1MUT), hypothesizing that biological differences versus wild type cases (NOTCH1WT) would explain the clinical ones, and exploiting potential differences with targeted molecules in vitro. Methods: From 2010 to 2019, presentation bone marrow aspirates or blood samples DNA was collected during the diagnostic workout from 378 CLL patients, all of them annotated by next generation sequencing. G 0/early-G 1 effectors gene expression was measured by RT-qPCR in negatively immunoselected circulating CLL cells. A siRNA approach was selected for silencing by electroporation 7 NOTCH1WT and 2 NOTCH1MUT cases. Cell cycle and apoptosis flow cytometry assays were performed on cultured fresh primary cells from n? NOTCH1MUT and 4 NOTCH1WT cases, before and after exposure to different concentrations of palbociclib, a CDK4/6 inhibitor. Results: We found that 37/378 (9.8%) of patients harbored a NOTCH1 mutation. NOTCH1MUTcases presented with higher lymphocyte counts [NOTCH1MUT 17.2 x10 9/L vs. NOTCH1WT 9.7 x10 9/L; p=0.042], trisomy 12 (35.1% vs. 11.4%; p<0.001) and a higher frequency of an unmutated IGHV status (70% vs. 21%; p<0.001). Of note, NOTCH1MUT patients had poorer responses to anti-CD20 based schemes than NOTCH1WT patients (35.7 vs. 69.8% complete response; p). We found that NOTCH1MUT cases showed a relevant increase of 38-fold change (FC) for CCND3, 27-FC for CDK4 and CCND2, 11-FC for CCND1 and 9-FC for CDK6 gene expression in negatively immunoselected circulating CLL cells at diagnosis. In addition, NOTCH1MUT cases displayed a statistically significant higher percentage of cells in the S phase than the wild type cases (21% vs. 1%, p=0.004). Though significance was not met, NOTCH1MUT cases showed a higher percentage of events within G 2-M (28% vs. 26 %). Next, we incorporated the flow cytometry assay to in vitro palbociclib treated CLL cells from 3 NOTCH1MUT and 4 NOTCH1WT cases. Five days after culture stimulation, cells were exposed to 38 and 76 μM (dose range for reaching maximum CLL cells sensitivity plateau) of the drug for 48 hours. As stated above, NOTCH1MUT cases were characterized by a much higher proportion of cells in S phase at baseline (21%), which was reduced in a dose dependent manner to an 8% and a 6% after exposure to palbociclib, respectively. The standard 48-72 hours drug assay may not be the most suitable for slow growth tumors as CLL and, in particular, for testing cell cycle inhibitors. Thus, we designed an assay for two cell cycles based on the average population doubling time of the primary cell culture experiments (0.6 in 72 hours), and using the mean steady state plasma concentration of palbociclib achieved clinically: 1 μM. After 120 hours, the baseline 15% of cells in S phase was reduced to an 0.64% after exposure to palbociclib 1 μM in NOTCH1MUT cases and a 1.8x-increase in the percentage dead cells was noted, compared with NOTCH1WT cases. Conclusions: Compared with NOTCH1WT CLL cases, we describe an overexpression of effectors of early phase in NOTCH1MUT. This profile made NOTCH1MU cells more suited to enter and traverse through the cell cycle and could explain, in part, the proliferative clinical-biological features of this subset of patients and opening a window for exploiting therapeutically these differences. Ours experiments in vitro with palbociclib sets the ground for the clinical research. Figure 1 Figure 1. Disclosures Jerez: BMS: Consultancy; Novartis: Consultancy; GILEAD: Research Funding.


1994 ◽  
Vol 125 (3) ◽  
pp. 625-638 ◽  
Author(s):  
J Lukas ◽  
H Müller ◽  
J Bartkova ◽  
D Spitkovsky ◽  
A A Kjerulff ◽  
...  

The retinoblastoma gene product (pRB) participates in the regulation of the cell division cycle through complex formation with numerous cellular regulatory proteins including the potentially oncogenic cyclin D1. Extending the current view of the emerging functional interplay between pRB and D-type cyclins, we now report that cyclin D1 expression is positively regulated by pRB. Cyclin D1 mRNA and protein is specifically downregulated in cells expressing SV40 large T antigen, adenovirus E1A, and papillomavirus E7/E6 oncogene products and this effect requires intact RB-binding, CR2 domain of E1A. Exceptionally low expression of cyclin D1 is also seen in genetically RB-deficient cell lines, in which ectopically expressed wild-type pRB results in specific induction of this G1 cyclin. At the functional level, antibody-mediated cyclin D1 knockout experiments demonstrate that the cyclin D1 protein, normally required for G1 progression, is dispensable for passage through the cell cycle in cell lines whose pRB is inactivated through complex formation with T antigen, E1A, or E7 oncoproteins as well as in cells which have suffered loss-of-function mutations of the RB gene. The requirement for cyclin D1 function is not regained upon experimental elevation of cyclin D1 expression in cells with mutant RB, while reintroduction of wild-type RB into RB-deficient cells leads to restoration of the cyclin D1 checkpoint. These results strongly suggest that pRB serves as a major target of cyclin D1 whose cell cycle regulatory function becomes dispensable in cells lacking functional RB. Based on available data including this study, we propose a model for an autoregulatory feedback loop mechanism that regulates both the expression of the cyclin D1 gene and the activity of pRB, thereby contributing to a G1 phase checkpoint control in cycling mammalian cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3498-3498
Author(s):  
Lapo Alinari ◽  
Ryan B. Edwards ◽  
Courtney J. Prince ◽  
William H. Towns ◽  
Rajeswaran Mani ◽  
...  

Abstract Abstract 3498 During cell cycle progression, D class cyclins activate cyclin dependent kinases (CDK) 4 and 6 to phosphorylate and inactivate Rb, allowing E2F-1 mediated transcription of additional cell cycle genes including cyclin E to drive S phase entry. This critical pathway is nearly universally dysregulated in cancer, providing tumor cells a strong growth advantage and escape from normal mitotic control. Substantial research is being directed toward targeting this pathway in many cancer types, with some preliminary successes being achieved with pharmacologic inhibitors of CDK4/6. However the development of alternative strategies to block this pathway could potentially provide broad therapeutic benefit. A prime example of a tumor with a disrupted cyclin D axis is Mantle Cell Lymphoma (MCL), in which the t(11;14) translocation places CCND1, the gene for cyclin D1, under the control of an immunoglobulin promoter. This results in sustained cyclin D1 expression in tumor cells and concomitant Rb inactivation, S phase entry and cell division. MCL is a relatively uncommon subset of Non-Hodgkin Lymphoma, but accounts for a disproportionate number of deaths. Treatments are limited and relapse is nearly universal; thus, new treatment strategies are essential for this disease. Silvestrol is a structurally unique, plant-derived cyclopenta[b]benzofuran with potent in vitro and in vivo anti-tumor activity in several model systems including B-cell acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL). Silvestrol inhibits the initiation step of translation by preventing assembly of eIF4A and capped mRNA into the eIF4F complex, leading to selective loss of short half-life proteins such as Mcl-1 and cyclin D1. We therefore hypothesized that silvestrol, through the depletion of cyclin D1, would demonstrate efficacy in MCL. Silvestrol showed low nanomolar IC50 values in the JeKo-1 (13 nM), Mino (17 nM) and SP-53 (43 nM) MCL cell lines at 48 hr (MTS assay; cell death confirmed by propidium iodide flow cytometry). This potency was similar in primary MCL tumor cells. Longer exposure times substantially improved the cytotoxicity of silvestrol assessed at 48 hr (approximately 50% effect achieved with a 16 hr exposure vs. 80% effect with a 24 hr exposure), suggesting that the cellular impacts of this agent increase with exposure time. Cyclins D1 and D3 were dramatically reduced in MCL cell lines with just 10 nM silvestrol at 16 hr (cyclin D2 was undetectable in these cells), with subsequent loss of Rb phosphorylation as well as cyclin E mRNA and protein, culminating in G1 cell cycle arrest. Similar to what we previously showed in CLL and ALL cells, silvestrol treatment under these conditions also caused loss of Mcl-1 protein with concurrent mitochondrial depolarization, although the exact mechanism of silvestrol-mediated cytotoxicity in these cells is still under investigation. In an aggressive xenograft mouse model of MCL, silvestrol produced a highly significant improvement in survival [median survival of vehicle vs. silvestrol treated mice (1.5 mg/kg every 48 hr) = 27 vs. 38 days; P<0.0001] without detectable toxicity. Together, these data demonstrate that the translation inhibitor silvestrol has promising in vitro and in vivo activity in MCL preclinical models. Furthermore, as the cyclin D/CDK/Rb axis is disrupted in most tumor types, this strategy may be broadly effective in other cancers as well. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Gaëtan Juban ◽  
Nathalie Sakakini ◽  
Hedia Chagraoui ◽  
Qian Cheng ◽  
Kelly Soady ◽  
...  

AbstractThe megakaryocyte/erythroid Transient Myeloproliferative Disorder (TMD) in newborns with Down Syndrome (DS) occurs when N-terminal truncating mutations of the hemopoietic transcription factor GATA1, that produce GATA1short protein (GATA1s), are acquired early in development. Prior work has shown that murine GATA1s, by itself, causes a transient yolk sac myeloproliferative disorder. However, it is unclear where in the hemopoietic cellular hierarchy GATA1s exerts its effects to produce this myeloproliferative state. Here, through a detailed examination of hemopoiesis from murine GATA1s ES cells and GATA1s embryos we define defects in erythroid and megakaryocytic differentiation that occur relatively in hemopoiesis. GATA1s causes an arrest late in erythroid differentiationin vivo, and even more profoundly in ES-cell derived cultures, with a marked reduction of Ter-119 cells and reduced erythroid gene expression. In megakaryopoiesis, GATA1s causes a differentiation delay at a specific stage, with accumulation of immature, kit-expressing CD41himegakaryocytic cells. In this specific megakaryocytic compartment, there are increased numbers of GATA1s cells in S-phase of cell cycle and reduced number of apoptotic cells compared to GATA1 cells in the same cell compartment. There is also a delay in maturation of these immature GATA1s megakaryocytic lineage cells compared to GATA1 cells at the same stage of differentiation. Finally, even when GATA1s megakaryocytic cells mature, they mature aberrantly with altered megakaryocyte-specific gene expression and activity of the mature megakaryocyte enzyme, acetylcholinesterase. These studies pinpoint the hemopoietic compartment where GATA1s megakaryocyte myeloproliferation occurs, defining where molecular studies should now be focussed to understand the oncogenic action of GATA1s.Scientific CategoryHaematopoiesis and Stem CellsKey PointsGATA1s-induced stage-specific differentiation delay increases immature megakaryocytesin vivoandin vitro, during development.Differentiation delay is associated with increased numbers of cells in S-phase and reduced apoptosis.


1996 ◽  
Vol 16 (11) ◽  
pp. 6457-6467 ◽  
Author(s):  
H Hirai ◽  
C J Sherr

The cyclin D-dependent kinases CDK4 and CDK6 trigger phosphorylation of the retinoblastoma protein (RB) late in G1 phase, helping to cancel its growth-suppressive function and thereby facilitating S-phase entry. Although specific inhibition of cyclin D-dependent kinase activity in vivo can prevent cells from entering S phase, it does not affect S-phase entry in cells lacking functional RB, implying that RB may be the only substrate of CDK4 and CDK6 whose phosphorylation is necessary for G1 exit. Using a yeast two-hybrid interactive screen, we have now isolated a novel cyclin D-interacting myb-like protein (designated DMP1), which binds specifically to the nonamer DNA consensus sequences CCCG(G/T)ATGT to activate transcription. A subset of these DMP1 recognition sequences containing a GGA trinucleotide core can also function as Ets-responsive elements. DMP1 mRNA and protein are ubiquitously expressed throughout the cell cycle in mouse tissues and in representative cell lines. DMP1 binds to D-type cyclins directly in vitro and when coexpressed in insect Sf9 cells. In both settings, it can be phosphorylated by cyclin D-dependent kinases, suggesting that its transcriptional activity may normally be regulated through such mechanisms. These results raise the possibility that cyclin D-dependent kinases regulate gene expression in an RB independent manner, thereby serving to link other genetic programs to the cell cycle clock.


2019 ◽  
Author(s):  
Andreas Kaczmarczyk ◽  
Antje M. Hempel ◽  
Christoph von Arx ◽  
Raphael Böhm ◽  
Badri N. Dubey ◽  
...  

ABSTRACTBacteria adapt their growth rate to their metabolic status and environmental conditions by modulating the length of their quiescent G1 period. But the molecular mechanisms controlling G1 length and exit from G1 are poorly understood. Here we identify a key role for the second messenger c-di-GMP, and demonstrate that a gradual increase in c-di-GMP concentration determines precise gene expression during G1/S inCaulobacter crescentus. We show that c-di-GMP strongly stimulates the kinase ShkA, activates the TacA transcription factor, and initiates a G1/S-specific transcription program leading to cell morphogenesis and S-phase entry. C-di-GMP activates ShkA by binding to its central pseudo-receiver domain uncovering this wide-spread domain as a novel signal input module of bacterial kinases. Activation of the ShkA-dependent genetic program also causes c-di-GMP to reach peak levels, which triggers S-phase entry and, in parallel, promotes proteolysis of ShkA and TacA. Thus, a gradual increase of c-di-GMP results in a precisely tuned ShkA-TacA activity window enabling G1/S specific gene expression before cells commit to replication initiation. By defining a regulatory mechanism for G1/S control, this study contributes to understanding bacterial growth control at the molecular level.GRAPHICAL ABSTRACT


2021 ◽  
Vol 12 ◽  
Author(s):  
Lian Zhou ◽  
Zuzana Vejlupkova ◽  
Cedar Warman ◽  
John E. Fowler

Members of the La-related protein family (LARPs) contain a conserved La module, which has been associated with RNA-binding activity. Expression of the maize gene GRMZM2G323499/Zm00001d018613, a member of the LARP family, is highly specific to pollen, based on both transcriptomic and proteomic assays. This suggests a pollen-specific RNA regulatory function for the protein, designated ZmLARP6c1 based on sequence similarity to the LARP6 subfamily in Arabidopsis. To test this hypothesis, a Ds-GFP transposable element insertion in the ZmLarp6c1 gene (tdsgR82C05) was obtained from the Dooner/Du mutant collection. Sequencing confirmed that the Ds-GFP insertion is in an exon, and thus likely interferes with ZmLARP6c1 function. Tracking inheritance of the insertion via its endosperm-expressed GFP indicated that the mutation was associated with reduced transmission from a heterozygous plant when crossed as a male (ranging from 0.5 to 26.5% transmission), but not as a female. Furthermore, this transmission defect was significantly alleviated when less pollen was applied to the silk, reducing competition between mutant and wild-type pollen. Pollen grain diameter measurements and nuclei counts showed no significant differences between wild-type and mutant pollen. However, in vitro, mutant pollen tubes were significantly shorter than those from sibling wild-type plants, and also displayed altered germination dynamics. These results are consistent with the idea that ZmLARP6c1 provides an important regulatory function during the highly competitive progamic phase of male gametophyte development following arrival of the pollen grain on the silk. The conditional, competitive nature of the Zmlarp6c1::Ds male sterility phenotype (i.e., reduced ability to produce progeny seed) points toward new possibilities for genetic control of parentage in crop production.


2010 ◽  
Vol 298 (3) ◽  
pp. C693-C701 ◽  
Author(s):  
Leike Xie ◽  
Philippe G. Frank ◽  
Michael P. Lisanti ◽  
Grzegorz Sowa

The goal of this study was to determine whether caveolin-2 (Cav-2) is capable of controlling endothelial cell (EC) proliferation in vitro. To realize this goal, we have directly compared proliferation rates and cell cycle-associated signaling proteins between lung ECs isolated from wild-type (WT) and Cav-2 knockout (KO) mice. Using three independent proliferation assays, we have determined that Cav-2 KO ECs proliferate by ca. 2-fold faster than their WT counterparts. Cell cycle analysis by flow cytometry of propidium iodide-stained cells showed a relatively higher percentage of Cav-2 KO ECs in S and G2/M and lower percentage in Go/G1 phases of cell cycle relative to their WT counterparts. Furthermore, an over 2-fold increase in the percentage of S phase-associated Cav-2 KO relative to WT ECs was independently determined with bromodeoxyuridine incorporation assay. Mechanistically, the increase in proliferation/cell cycle progression of Cav-2 KO ECs correlated well with elevated expression levels of predominantly S phase- and G2/M phase-associated cyclin A and B1, respectively. Further mechanistic analysis of molecular events controlling cell cycle progression revealed increased level of hyperphosphorylated (inactive) form of G1 to S phase transition inhibitor, the retinoblastoma protein in hyperproliferating Cav-2 KO ECs. Conversely, the expression level of the two cyclin-dependent kinase inhibitors p16INK4 and p27Kip1 was reduced in Cav-2 KO ECs. Finally, increased phosphorylation (activation) of proproliferative extracellular signal-regulated kinase 1/2 was observed in hyperproliferating Cav-2 KO ECs. Overall, our data suggest that Cav-2 negatively regulates lung EC proliferation and cell cycle progression.


2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Jie Ma ◽  
Xian-Bin Wang ◽  
Rui Li ◽  
Shu-Hong Xuan ◽  
Fang Wang ◽  
...  

Esophageal cancer (EC) remains an important health problem in China. In the present study, through the use of siRNA, specific gene knockdown of transcription factor 3 gene (TCF-3) was achieved in vitro and the effect of TCF-3 gene on human EC Eca-109 cell proliferation and apoptosis. Eca-109 cells were treated using negative control (NC) of siRNA against TCF-3 (siTCF-3) and siTCF-3 group. Colony formation assay was used to detect the colony formation ability in Eca-109 cells. MTT assay was used to measure the cell growth and viability, whereas BrDU assay was used to evaluate cell proliferation, and flow cytometry (FCM) to assess cell apoptosis. Reverse-transcription quantitative PCR (RT-qPCR) was applied to measure TCF-3 gene expression. Protein expressions of TCF-3, apoptosis-related proteins, Bcl-2, Bax, and caspase-3 were determined using Western blotting. Transfection of siTCF-3 successfully down-regulated TCF-3 gene expression. In addition, siTCF-3, reduced Eca-109 cell viability and proliferation, in a time-dependent manner, and inhibited progression of cell cycle from G0/G1 to S-stage. When treated with siTCF-3, the Eca-109 cells exhibited increased apoptosis, with up-regulated cleaved caspase and Bax expressions, whereas Bcl-2 expression was down-regulated. The present study shows that TCF-3 gene silencing inhibits Eca-109 cell growth and proliferation, suppresses cell cycle progression, and promotes apoptosis, which might serve as a new objective for EC treatment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 898-898
Author(s):  
Cassandra L Love ◽  
Dereje Jima ◽  
Zhen Sun ◽  
Rodney R. Miles ◽  
Cherie H. Dunphy ◽  
...  

Abstract Abstract 898 Burkitt Lymphoma (BL) is a highly proliferative form of non-Hodgkin lymphoma and is characterized by translocation of the C-MYC gene to the immunoglobulin gene loci resulting in deregulation. The role of collaborating gene mutations in BL is largely unknown. We performed whole exome sequencing and gene expression profiling of 57 Burkitt lymphoma and 94 DLBCL exomes. Mutational analysis revealed that ID3 is recurrently mutated in 38% of Burkitt lymphoma samples. ID3 mutations did not occur in any of the 94 DLBCL cases. ID3 gene expression was also found to be a distinguishing feature of Burkitt lymphomas (P<10−6), compared to DLBCL. We found a total of 27 distinct mutations in the ID3 genes among the 22 BL cases. These included five frameshift, four nonsense, and 18 missense mutations. We validated 16 of these events with Sanger sequencing with over 90% concordance. All of these mutations were located in the highly conserved helix-loop-helix region located on Exon 1. We explored the biological significance of ID3 mutations by initially comparing the gene expression profiles of BL cases that had mutated and wild-type ID3. Gene set enrichment analysis showed that those samples with mutated ID3 had higher expression of genes that were involved in cell cycle regulation, specifically those involved in the G1-S transition (P=0.01). In order to experimentally investigate the functional consequences of ID3 mutation, we generated mutant constructs corresponding to six different ID3 mutations observed in BLs. These mutant constructs were cloned into lentiviral vectors and overexpressed in BL cells that were wild type for ID3. We then performed cell cycle analysis for these wild type cells expressing GFP controls or the mutant constructs. We found that BL cells expressing each of the six mutant constructs demonstrated significant cell cycle progression from G1 to S phase compared to wild-type (P=0.01). Separately, we tested the effects of expressing mutant ID3 in cell proliferation assays and found that cells expressing mutant ID3 were considerably more proliferative than those expressing wild type (P=0.03). Conversely, we over-expressed the wild type form of ID3 in BL cells that had mutated ID3. These experiments completely rescued the observed phenotypes of the mutant ID3 constructs, with reduced cell cycle progression through increased G1 phase and decreased S-phase (P=0.04). We also noted decreased cell proliferation in these cells (P=0.03). These experiments support a role for ID3 as a novel tumor suppressor gene in Burkitt lymphoma. ID3 is a basic helix loop helix (bHLH) protein that binds to other E-proteins, blocking their ability to bind DNA. ID3 has been shown to be involved in a variety of biological processes including development and T and B cell differentiation. ID3 knockout mice have been shown to develop T cell as well as B cell lymphomas. Our data implicates this gene for the first time as a tumor suppressor in human cancer. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document