scholarly journals RNAi-mediated TCF-3 gene silencing inhibits proliferation of Eca-109 esophageal cancer cells by inducing apoptosis

2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Jie Ma ◽  
Xian-Bin Wang ◽  
Rui Li ◽  
Shu-Hong Xuan ◽  
Fang Wang ◽  
...  

Esophageal cancer (EC) remains an important health problem in China. In the present study, through the use of siRNA, specific gene knockdown of transcription factor 3 gene (TCF-3) was achieved in vitro and the effect of TCF-3 gene on human EC Eca-109 cell proliferation and apoptosis. Eca-109 cells were treated using negative control (NC) of siRNA against TCF-3 (siTCF-3) and siTCF-3 group. Colony formation assay was used to detect the colony formation ability in Eca-109 cells. MTT assay was used to measure the cell growth and viability, whereas BrDU assay was used to evaluate cell proliferation, and flow cytometry (FCM) to assess cell apoptosis. Reverse-transcription quantitative PCR (RT-qPCR) was applied to measure TCF-3 gene expression. Protein expressions of TCF-3, apoptosis-related proteins, Bcl-2, Bax, and caspase-3 were determined using Western blotting. Transfection of siTCF-3 successfully down-regulated TCF-3 gene expression. In addition, siTCF-3, reduced Eca-109 cell viability and proliferation, in a time-dependent manner, and inhibited progression of cell cycle from G0/G1 to S-stage. When treated with siTCF-3, the Eca-109 cells exhibited increased apoptosis, with up-regulated cleaved caspase and Bax expressions, whereas Bcl-2 expression was down-regulated. The present study shows that TCF-3 gene silencing inhibits Eca-109 cell growth and proliferation, suppresses cell cycle progression, and promotes apoptosis, which might serve as a new objective for EC treatment.

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2178
Author(s):  
Fabio Morandi ◽  
Veronica Bensa ◽  
Enzo Calarco ◽  
Fabio Pastorino ◽  
Patrizia Perri ◽  
...  

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


2017 ◽  
Vol 138 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Yang Liu ◽  
Xiaochen Yu ◽  
Junling Zhuang

Objectives: To explore the effect of the β-adrenoreceptor signaling pathway on myeloma cells. Methods: The myeloma U266 cell line was treated with epinephrine and propranolol. Cell proliferation was analyzed by MTS assay. Apoptosis was detected by flow cytometry. The β-receptor subtype and the key enzyme of epinephrine were identified by reverse transcription polymerase chain reaction (RT-PCR). Results: Epinephrine (5-50 μM) promoted U266 cell growth in a dose-dependent manner and neutralized the inhibition effect of bortezomib (25 and 50 ng/mL) in vitro. Cell proliferation was inhibited by a β-receptor antagonist, propranolol, at a concentration of 50-200 μM. The proportions of early and late apoptotic cells were enhanced after treatment with propranolol. The expression of caspase 3/7, 8, and 9 was elevated in propranolol-treated myeloma cells. Both β1- and β2-adrenoceptor mRNAs were expressed in the U266 cell line. Key enzymes dopamine hydroxylase and tyrosinehydroxylase were identified in myeloma cells. Conclusions: Our results reveal that epinephrine stimulates myeloma cell growth in vitro while the β-blocker propranolol has an antiproliferative effect, indicating that stress hormones may trigger the progression of myeloma.


2020 ◽  
Vol 52 (2) ◽  
pp. 168-179 ◽  
Author(s):  
Huilin Gong ◽  
Shan Gao ◽  
Chenghuan Yu ◽  
Meihe Li ◽  
Ping Liu ◽  
...  

Abstract Y-box binding protein 1 (YB-1) is manifested as its involvement in cell proliferation and differentiation and malignant cell transformation. Overexpression of YB-1 is associated with glioma progression and patient survival. The aim of this study is to investigate the influence of YB-1 knockdown on glioma cell progression and reveal the mechanisms of YB-1 knockdown on glioma cell growth, migration, and apoptosis. It was found that the knockdown of YB-1 decreased the mRNA and protein levels of YB-1 in U251 glioma cells. The knockdown of YB-1 significantly inhibited cell proliferation, colony formation, and migration in vitro and tumor growth in vivo. Proteome and phosphoproteome data revealed that YB-1 is involved in glioma progression through regulating the expression and phosphorylation of major proteins involved in cell cycle, adhesion, and apoptosis. The main regulated proteins included CCNB1, CCNDBP1, CDK2, CDK3, ADGRG1, CDH-2, MMP14, AIFM1, HO-1, and BAX. Furthermore, it was also found that YB-1 knockdown is associated with the hypo-phosphorylation of ErbB, mTOR, HIF-1, cGMP-PKG, and insulin signaling pathways, and proteoglycans in cancer. Our findings indicated that YB-1 plays a key role in glioma progression in multiple ways, including regulating the expression and phosphorylation of major proteins associated with cell cycle, adhesion, and apoptosis.


2009 ◽  
Vol 204 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Salvatore Ulisse ◽  
Yannick Arlot-Bonnemains ◽  
Enke Baldini ◽  
Stefania Morrone ◽  
Silvia Carocci ◽  
...  

The aurora kinase family members, Aurora-A, -B, and -C (listed as AURKA, AURKB and AURKC respectively in the HUGO Database), are serine/threonine kinases involved in the regulation of chromosome segregation and cytokinesis, and alterations in their expression are associated with malignant cell transformation and genomic instability. Deregulation of the expression of the aurora kinases has been shown to occur also in testicular germ cell tumors (TGCTs) identifying them as putative anticancer therapeutic targets. We here evaluated the in vitro effects of MK-0457, an aurora kinases inhibitor, on cell proliferation, cell cycle, ploidy, apoptosis, and tumorigenicity on the TGCT-derived cell line NT2-D1. Treatment with MK-0457 inhibited cell proliferation in a time- and dose-dependent manner, with IC50=17.2±3.3 nM. MK-0457 did not affect the expression of the three aurora kinases, but prevented their ability to phosphorylate substrates relevant to the mitotic progression. Time-lapse experiments demonstrated that MK-0457-treated cells entered mitosis but were unable to complete it, presenting after short time the typical features of apoptotic cells. Cytofluorimetric analysis confirmed that the treatment with MK-0457 for 6 h induced NT2-D1 cells accumulation in the G2/M phase of the cell cycle and the subsequent appearance of sub-G0 nuclei. The latter result was further supported by the detection of caspase-3 activation following 24-h treatment with the inhibitor. Finally, MK-0457 prevented the capability of the NT2-D1 cells to form colonies in soft agar. In conclusion, the above findings demonstrate that inhibition of aurora kinase activity is effective in reducing in vitro growth and tumorigenicity of NT2-D1 cells, and indicate its potential therapeutic value for TGCT treatment.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1300 ◽  
Author(s):  
Songyot Anuchapreeda ◽  
Fah Chueahongthong ◽  
Natsima Viriyaadhammaa ◽  
Pawaret Panyajai ◽  
Riki Anzawa ◽  
...  

Kaffir lime (Citrus hystrix) is a plant member of family Rutaceae, and its leaves are commonly used in folk medicine. The present study explores antileukemic effects of the extracts and purified active compounds from the leaves. The antileukemic activity was investigated via inhibition of Wilms’ tumor 1 (WT1), which is a protein that involves in leukemic cell proliferation. In addition, the compounds were investigated for their effects on WT1 gene expression using real time RT-PCR and Western blotting. Cell cycle arrest and total cell number were investigated using flow cytometry and trypan blue exclusion method, respectively. The results demonstrated that the hexane fractionated extract had the greatest inhibitory effect on WT1 gene expression of many leukemic cell lines and significantly decreased WT1 protein levels of K562 cells (representative of the leukemic cells), in a dose- and time-dependent manner. Subfraction No. 9 (F9) after partial purification of hexane fractioned extract showed the highest suppression on WT1 protein and suppressed cell cycle at G2/M. The organic compounds were isolated from F9 and identified as phytol and lupeol. The bioassays confirmed antiproliferative activities of natural products phytol and lupeol. The results demonstrated anticancer activity of the isolated phytol and lupeol to decrease leukemic cell proliferation.


2005 ◽  
Vol 289 (4) ◽  
pp. C826-C835 ◽  
Author(s):  
Sharon Barone ◽  
Tomohisa Okaya ◽  
Steve Rudich ◽  
Snezana Petrovic ◽  
Kathy Tenrani ◽  
...  

Ischemia-reperfusion injury (IRI) in liver and other organs is manifested as an injury phase followed by recovery and resolution. Control of cell growth and proliferation is essential for recovery from the injury. We examined the expression of three related regulators of cell cycle progression in liver IRI: spermidine/spermine N-acetyltransferase (SSAT), p21 (a cyclin-dependent kinase inhibitor), and stathmin. Mice were subjected to hepatic IRI, and liver tissues were harvested at timed intervals. The expression of SSAT, the rate-limiting enzyme in the polyamine catabolic pathway, had increased fivefold 6 h after IRI and correlated with increased putrescine levels in the liver, consistent with increased SSAT enzymatic activity in IRI. The expression of p21, which is transactivated by p53, was undetectable in sham-operated animals but was heavily induced at 12 and 24 h of reperfusion and declined to undetectable baseline levels at 72 h of reperfusion. The interaction of the polyamine pathway with the p53-p21 pathway was shown in vitro, where activation of SSAT with polyamine analog or the addition of putrescine to cultured hepatocytes induced the expression of p53 and p21 and decreased cell viability. The expression of stathmin, which is under negative transcriptional regulation by p21 and controls cell proliferation and progression through mitosis, remained undetectable at 6, 12, and 24 h of reperfusion and was progressively and heavily induced at 48 and 72 h of reperfusion. Double-immunofluorescence labeling with antibodies against stathmin and PCNA, a marker of cell proliferation, demonstrated colocalization of stathmin and PCNA at 48 and 72 h of reperfusion in hepatocytes, indicating the initiation of cell proliferation. The distinct and sequential upregulation of SSAT, p21, and stathmin, along with biochemical activation of the polyamine catabolic pathway in IRI in vivo and the demonstration of p53-p21 upregulation by SSAT and putrescine in vitro, points to the important role of regulators of cell growth and cell cycle progression in the pathophysiology and/or recovery in liver IRI. The data further suggest that SSAT may play a role in the initiation of injury, whereas p21 and stathmin may be involved in the resolution and recovery after liver IRI.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Frederik Roos ◽  
Katherina Binder ◽  
Jochen Rutz ◽  
Sebastian Maxeiner ◽  
August Bernd ◽  
...  

The natural compound curcumin exerts antitumor properties in vitro, but its clinical application is limited due to low bioavailability. Light exposure in skin and skin cancer cells has been shown to improve curcumin bioavailability; thus, the object of this investigation was to determine whether light exposure might also enhance curcumin efficacy in bladder cancer cell lines. RT112, UMUC3, and TCCSUP cells were preincubated with low curcumin concentrations (0.1-0.4μg/ml) and then exposed to 1.65 J/cm2visible light for 5 min. Cell growth, cell proliferation, apoptosis, cell cycle progression, and cell cycle regulating proteins along with acetylation of histone H3 and H4 were investigated. Though curcumin alone did not alter cell proliferation or apoptosis, tumor cell growth and proliferation were strongly blocked when curcumin was combined with visible light. Curcumin-light caused the bladder cancer cells to become arrested in different cell phases: G0/G1 for RT112, G2/M for TCCSUP, and G2/M- and S-phase for UMUC3. Proteins of the Cdk-cyclin axis were diminished in RT112 after application of 0.1 and 0.4μg/ml curcumin. Cell cycling proteins were upregulated in TCCSUP and UMUC3 in the presence of 0.1μg/ml curcumin-light but were partially downregulated with 0.4μg/ml curcumin. 0.4μg/ml (but not 0.1μg/ml) curcumin-light also evoked late apoptosis in TCCSUP and UMUC3 cells. H3 and H4 acetylation was found in UMUC3 cells treated with 0.4μg/ml curcumin alone or with 0.1μg/ml curcumin-light, pointing to an epigenetic mechanism. Light exposure enhanced the antitumor potential of curcumin on bladder cancer cells but by different molecular action modes in the different cell lines. Further studies are necessary to evaluate whether intravesical curcumin application, combined with visible light, might become an innovative tool in combating bladder cancer.


2008 ◽  
Vol 29 (2) ◽  
pp. 414-424 ◽  
Author(s):  
Jean-Leon Chong ◽  
Shih-Yin Tsai ◽  
Nidhi Sharma ◽  
Rene Opavsky ◽  
Richard Price ◽  
...  

ABSTRACT The E2f3 locus encodes two Rb-binding gene products, E2F3a and E2F3b, which are differentially regulated during the cell cycle and are thought to be critical for cell cycle progression. We targeted the individual inactivation of E2f3a or E2f3b in mice and examined their contributions to cell proliferation and development. Chromatin immunoprecipitation and gene expression experiments using mouse embryo fibroblasts deficient in each isoform showed that E2F3a and E2F3b contribute to G1/S-specific gene expression and cell proliferation. Expression of E2f3a or E2f3b was sufficient to support E2F target gene expression and cell proliferation in the absence of other E2F activators, E2f1 and E2f2, suggesting that these isoforms have redundant functions. Consistent with this notion, E2f3a −/− and E2f3b −/− embryos developed normally, whereas embryos lacking both isoforms (E2f3 −/−) died in utero. We also find that E2f3a and E2f3b have redundant and nonredundant roles in the context of Rb mutation. Analysis of double-knockout embryos suggests that the ectopic proliferation and apoptosis in Rb −/− embryos is mainly mediated by E2f3a in the placenta and nervous system and by both E2f3a and E2f3b in lens fiber cells. Together, we conclude that the contributions of E2F3a and E2F3b in cell proliferation and development are context dependent.


2021 ◽  
Author(s):  
Jiamin Ding ◽  
Zuoliang Chen ◽  
Wanlu Chen ◽  
Zhongxiong Ma ◽  
Yunde Xie ◽  
...  

Abstract Background: Qilan preparation, a complex Chinese herbal medicine consisting of ingredients extracted from Radix Astragali, Gynostemma Pentaphyllum, Rhizoma Chuanxiong and selenium- rich green tea and known for ‘fortifying the spleen and boosting qi, quickening the blood and transforming stasis, and resolving toxins and relieving pain, is used for the prevention and management of oral diseases. The aim of this study was to examine the antitumor effects of Qilan preparation on oral squamous cell carcinoma (OSCC) in vitro and to explore its underlying mechanisms of action. Methods: Human Tca8113 tongue squamous cell carcinoma (TSCC) cells were tested. Cell proliferation, cell cycle distribution and apoptosis were examined using cell counting kit-8 (CCK8) and flow cytometry (FCM). The expression of PTEN and PDCD4 were determined by western blot. Changes in miR-21 levels were quantified using TaqMan stem-loop real-time PCR. After miR-21 was transiently transfected into Tca8113 cells using Lipofectamine®3000, cell proliferation, apoptosis and miR-21 and PDCD4 expression levels were measured.Results: Qilan preparation inhibited Tca8113 cell growth in a dose- and time-dependent manner by inducing apoptosis and cell cycle arrest in S-phase, decreasing miR-21 levels and increasing PTEN and PDCD4 expression. MiR-21 overexpression reversed the Qilan preparation-induced suppression of cell proliferation and induction of apoptosis while also blocking the increase in PDCD4.Conclusions: Our study revealed, for the first time, the ability of Qilan preparation to suppress TSCC cell growth and elucidated that Qilan preparation elicits its anti-cancer actions via either the miR-21/PDCD4 or PTEN pathway.


Chemotherapy ◽  
2019 ◽  
Vol 64 (3) ◽  
pp. 146-154 ◽  
Author(s):  
Jinghu He ◽  
Junjie Xing ◽  
Xiaohong Yang ◽  
Chenxin Zhang ◽  
Yixiang Zhang ◽  
...  

Objective: Colorectal cancer (CRC) remains a major cause of cancer-related death worldwide. Proteasome 26S subunit ATPase 2 (PSMC2) plays vital roles in regulating cell cycle and transcription and has been confirmed to be a gene potentially associated with some human tumors. However, the expression correlation and molecular mechanism of PSMC2 in CRC are still unclear. This study aimed to investigate the role of PSMC2 in malignant behaviors in CRC. Methods: The high protein levels of PSMC2 in CRC samples were identified by tissue microarray analysis. Lentivirus was used to silence PSMC2 in HCT116 and RKO cells; MTT and colony formation assay were performed to determine cell proliferation. Wound healing and Transwell assay were used to detect cell migration and invasion. Flow cytometry assay was applied to detect cell cycle and apoptosis. Result: The results showed that, among the 96 CRC patients, the expression of PSMC2 was a positive correlation with the clinicopathological features of the patients with CRC. Furthermore, the low PSMC2 expression group showed a higher survival rate than the high PSMC2 expression group. The expression levels of PSMC2 in cancer tissue were dramatically upregulated compared with adjacent normal tissues. In vitro, shPSMC2 was designed to inhibit the expression of PSMC2 in CRC cells. Compared with shCtrl, silencing of PSMC2 significantly suppressed cell proliferation, decreased single cell colony formation, enhanced apoptosis, and accelerated G2 phase and/or S phase arrest. Conclusion: Survival analysis indicated that high expression of PSMC2 in the CRC samples was associated with poorer survival rate than low expression of PSMC2, while the anti-tumor effect of PSMC2 silencing was also confirmed at the cellular level in vitro. Our results suggested that PSMC2 potentially worked as a regulator for CRC, and the silencing of PSMC2 may be a therapeutic strategy for CRC.


Sign in / Sign up

Export Citation Format

Share Document