scholarly journals Impaired Activity of the Extraneuronal Monoamine Transporter System Known as Uptake-2 inOrct3/Slc22a3-Deficient Mice

2001 ◽  
Vol 21 (13) ◽  
pp. 4188-4196 ◽  
Author(s):  
Ronald Zwart ◽  
Sandra Verhaagh ◽  
Marije Buitelaar ◽  
Corrie Popp-Snijders ◽  
Denise P. Barlow

ABSTRACT Two uptake systems that control the extracellular concentrations of released monoamine neurotransmitters such as noradrenaline and adrenaline have been described. Uptake-1 is present at presynaptic nerve endings, whereas uptake-2 is extraneuronal and has been identified in myocardium and vascular and nonvascular smooth muscle cells. The gene encoding the uptake-2 transporter has recently been identified in humans (EMT), rats (OCT3), and mice (Orct3/Slc22a3). To generate an in vivo model for uptake-2, we have inactivated the mouseOrct3 gene. Homozygous mutant mice are viable and fertile with no obvious physiological defect and also show no significant imbalance of noradrenaline or dopamine. However,Orct3-null mice show an impaired uptake-2 activity as measured by accumulation of intravenously administered [3H]MPP+ (1-methyl-4-phenylpyridinium). A 72% reduction in MPP+ levels was measured in hearts of both male and female Orct3 mutant mice. No significant differences between wild-type and mutant mice were found in any other adult organ or in plasma. When [3H]MPP+ was injected into pregnant females, a threefold-reduced MPP+accumulation was observed in homozygous mutant embryos but not in their placentas or amniotic fluid. These data show that Orct3is the principal component for uptake-2 function in the adult heart and identify the placenta as a novel site of action of uptake-2 that acts at the fetoplacental interface.

1997 ◽  
Vol 186 (11) ◽  
pp. 1853-1863 ◽  
Author(s):  
Tao Tang ◽  
Alexander Rosenkranz ◽  
Karel J.M. Assmann ◽  
Michael J. Goodman ◽  
Jose-Carlos Gutierrez-Ramos ◽  
...  

Mac-1 (αmβ2), a leukocyte adhesion receptor, has been shown in vitro to functionally interact with Fcγ receptors to facilitate immune complex (IC)–stimulated polymorphonuclear neutrophil (PMN) functions. To investigate the relevance of Mac-1–FcγR interactions in IC-mediated injury in vivo, we induced a model of Fc-dependent anti–glomerular basement membrane (GBM) nephritis in wild-type and Mac-1–deficient mice by the intravenous injection of anti-GBM antibody. The initial glomerular PMN accumulation was equivalent in Mac-1 null and wild-type mice, but thereafter increased in wild-type and decreased in mutant mice. The absence of Mac-1 interactions with obvious ligands, intercellular adhesion molecule 1 (ICAM-1), and C3 complement, is not responsible for the decrease in neutrophil accumulation in Mac-1– deficient mice since glomerular PMN accumulation in mice deficient in these ligands was comparable to those in wild-type mice. In vitro studies showed that spreading of Mac-1–null PMNs to IC-coated dishes was equivalent to that of wild-type PMNs at 5–12 min but was markedly reduced thereafter, and was associated with an inability of mutant neutrophils to redistribute filamentous actin. This suggests that in vivo, Mac-1 is not required for the initiation of Fc-mediated PMN recruitment but that Mac-1–FcγR interactions are required for filamentous actin reorganization leading to sustained PMN adhesion, and this represents the first demonstration of the relevance of Mac-1–FcγR interactions in vivo. PMN-dependent proteinuria, maximal in wild-type mice at 8 h, was absent in Mac-1 mutant mice at all time points. Complement C3–deficient mice also had significantly decreased proteinuria compared to wild-type mice. Since Mac-1 on PMNs is the principal ligand for ic3b, an absence of Mac-1 interaction with C3 probably contributed to the abrogation of proteinuria in Mac-1–null mice.


2002 ◽  
Vol 282 (6) ◽  
pp. H2422-H2426 ◽  
Author(s):  
Brent R. Sharp ◽  
Steven P. Jones ◽  
David M. Rimmer ◽  
David J. Lefer

Two strains of endothelial nitric oxide synthase (eNOS)-deficient (−/−) mice have been developed that respond differently to myocardial ischemia-reperfusion (MI/R). We evaluated both strains of eNOS−/− mice in an in vivo model of MI/R. Harvard (Har) eNOS−/− mice ( n = 12) experienced an 84% increase in myocardial necrosis compared with wild-type controls ( P < 0.05). University of North Carolina (UNC) eNOS−/−( n = 10) exhibited a 52% reduction in myocardial injury versus wild-type controls ( P < 0.05). PCR analysis of myocardial inducible NO synthase (iNOS) mRNA levels revealed a significant ( P < 0.05) increase in the UNC eNOS−/− mice compared with wild-type mice, and there was no significant difference between the Har eNOS−/− and wild-type mice. UNC eNOS−/− mice treated with an iNOS inhibitor (1400W) exacerbated the extent of myocardial necrosis. When treated with 1400W, Har eNOS−/− did not exhibit a significant increase in myocardial necrosis. These data demonstrate that two distinct strains of eNOS−/− mice display opposite responses to MI/R. Although the protection seen in the UNC eNOS−/− mouse may result from compensatory increases in iNOS, other genes may be involved.


1987 ◽  
Vol 253 (2) ◽  
pp. R375-R378
Author(s):  
G. E. Plante ◽  
C. Prevost ◽  
A. Chainey ◽  
P. Braquet ◽  
P. Sirois

The effect of increasing doses of prestegane B, a synthetic lignan, was examined in the anesthetized normal rat, using clearance methodology. Increasing doses of prestegane B 0.5, 1.0, 2.0, and 5.0 mg) were administered intravenously in our separate groups of hydropenic rats. Urine flow increased by 2.8 +/- 0.3, 4.5 +/- 0.5, 7.7 +/- 0.5, and 18.2 +/- 0.8 microliters/min, respectively, above control values. The rise of urinary sodium secretion was of similar magnitude and averaged 0.4 +/- 0.1, 0.8 +/- 0.2, 1.1 +/- 0.3, and 2.4 +/- 0.3 mu eq/min, respectively. No significant change in urinary phosphate excretion was obtained in all groups of rats, and glomerular filtration rate remained constant from control to experimental clearance periods. The natriuretic effect of prestegane B observed in this in vivo model could be related to the inhibition of the Na+-K+-adenosine triphosphate activity demonstrated in vitro in previous studies from our laboratory. The action of this substance is likely to be situated beyond the proximal tubule, since urinary phosphate was not altered. Prestegane B mimics the effects of other endogenous diuretic and natriuretic hormones, but its site of action and its effect on renal hemodynamics are obviously different.


2015 ◽  
Vol 2 (2) ◽  
Author(s):  
Izabella Surowiec ◽  
Judy Orikiiriza ◽  
Elisabeth Karlsson ◽  
Maria Nelson ◽  
Mari Bonde ◽  
...  

Abstract Background.  Accuracy in malaria diagnosis and staging is vital to reduce mortality and post infectious sequelae. In this study, we present a metabolomics approach to diagnostic staging of malaria infection, specifically Plasmodium falciparum infection in children. Methods.  A group of 421 patients between 6 months and 6 years of age with mild and severe states of malaria with age-matched controls were included in the study, 107, 192, and 122, individuals, respectively. A multivariate design was used as basis for representative selection of 20 patients in each category. Patient plasma was subjected to gas chromatography-mass spectrometry analysis, and a full metabolite profile was produced from each patient. In addition, a proof-of-concept model was tested in a Plasmodium berghei in vivo model where metabolic profiles were discernible over time of infection. Results.  A 2-component principal component analysis revealed that the patients could be separated into disease categories according to metabolite profiles, independently of any clinical information. Furthermore, 2 subgroups could be ide.jpegied in the mild malaria cohort who we believe represent patients with divergent prognoses. Conclusions.  Metabolite signature profiling could be used both for decision support in disease staging and prognostication.


2018 ◽  
Vol 148 (9) ◽  
pp. 1415-1420 ◽  
Author(s):  
Xiaoying Wang ◽  
Yang Yuan ◽  
Inka C Didelija ◽  
Mahmoud A Mohammad ◽  
Juan C Marini

Abstract Background The endogenous production of arginine relies on the synthesis of citrulline by enteral ornithine transcarbamylase (OTC). Mutations in the gene coding for this enzyme are the most frequent cause of urea cycle disorders. There is a lack of correlation between in vivo metabolic function and DNA sequence, transcript abundance, or in vitro enzyme activity. Objective The goal of the present work was to test the hypothesis that enteroids, a novel ex vivo model, are able to recapitulate the in vivo citrulline production of wild-type (WT) and mutant mice. Methods Six-week-old male WT and OTC-deficient mice [sparse fur and abnormal skin (spf-ash) mutation] were studied. Urea and citrulline fluxes were determined in vivo, and OTC abundance was measured in liver and gut tissue. Intestinal crypts were isolated and cultured to develop enteroids. Ex vivo citrulline production and OTC abundance were determined in these enteroids. Results Liver OTC abundance was lower (mean ± SE: 0.16 ± 0.01 compared with 1.85 ± 0.18 arbitrary units; P < 0.001) in spf-ash mice than in WT mice, but there was no difference in urea production. In gut tissue, OTC was barely detectable in mutant mice; despite this, a lower but substantial citrulline production (67 ± 3 compared with 167 ± 8 µmol · kg−1 · h−1; P < 0.001) was shown in the mutant mice. Enteroids recapitulated the in vivo findings of a very low OTC content accompanied by a reduced citrulline production (1.07 ± 0.20 compared with 4.64 ± 0.44 nmol · µg DNA−1 · d−1; P < 0.001). Conclusions Enteroids recapitulate in vivo citrulline production and offer the opportunity to study the regulation of citrulline production in a highly manipulable system.


Development ◽  
1999 ◽  
Vol 126 (15) ◽  
pp. 3415-3424 ◽  
Author(s):  
Y. Hamada ◽  
Y. Kadokawa ◽  
M. Okabe ◽  
M. Ikawa ◽  
J.R. Coleman ◽  
...  

Notch family genes encode transmembrane proteins involved in cell-fate determination. Using gene targeting procedures, we disrupted the mouse Notch2 gene by replacing all but one of the ankyrin repeat sequences in the cytoplasmic domain with the E. coli (beta)-galactosidase gene. The mutant Notch2 gene encodes a 380 kDa Notch2-(beta)-gal fusion protein with (beta)-galactosidase activity. Notch2 homozygous mutant mice die prior to embryonic day 11.5, whereas heterozygotes show no apparent abnormalities and are fully viable. Analysis of Notch2 expression patterns, revealed by X-gal staining, demonstrated that the Notch2 gene is expressed in a wide variety of tissues including neuroepithelia, somites, optic vesicles, otic vesicles, and branchial arches, but not heart. Histological studies, including in situ nick end labeling procedures, showed earlier onset and higher incidence of apoptosis in homozygous mutant mice than in heterozygotes or wild type mice. Dying cells were particularly evident in neural tissues, where they were seen as early as embryonic day 9.5 in Notch2-deficient mice. Cells from Notch2 mutant mice attach and grow normally in culture, demonstrating that Notch2 deficiency does not interfere with cell proliferation and that expression of the Notch2-(beta)-gal fusion protein is not toxic per se. In contrast to Notch1-deficient mice, Notch2 mutant mice did not show disorganized somitogenesis, nor did they fail to properly regulate the expression of neurogenic genes such as Hes-5 or Mash1. In situ hybridization studies show no indication of altered Notch1 expression patterns in Notch2 mutant mice. The results indicate that Notch2 plays an essential role in postimplantation development in mice, probably in some aspect of cell specification and/or differentiation, and that the ankyrin repeats are indispensable for its function.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 99-99
Author(s):  
Ranjeet Kumar Sinha ◽  
Laurent Burnier ◽  
Naveen Gupta ◽  
Xiao Xu ◽  
Sergey Kupriyanov ◽  
...  

Abstract Introduction: Thrombin (IIa) and activated protein C (APC) are serine proteases involved in coagulation and inflammatory responses that affect many cell types in the body. IIa employs the GPCR, protease activated receptor 1 (PAR1), to promote endothelial barrier disruption, vascular leakage, and inflammation. In contrast, APC requires PAR1 for its opposing actions to stabilize endothelial barriers and to provide anti-inflammatory and anti-apoptotic activities. Studies of murine in vivo injury models using PAR1 knockout mice show that APC requires PAR1 to reduce sepsis-induced mortality and to provide robust neuroprotection following ischemic stroke. Extensive in vitro studies support the hypothesis that IIa’s cleavage at R41 in PAR1 initiates its signaling. Although APC was long thought, paradoxically, to act also via cleavage at R41, we recently proposed that APC’s cleavage at R46 initiates its endothelial barrier-protective and cytoprotective signaling via biased signaling. Since PAR1 knock-out mice cannot provide mechanistic data for testing these hypotheses in vivo, mice carrying the point mutation of R41 to Q in PAR1 were generated to enable mechanistic studies to test whether or not IIa and APC require Arg41 for their PAR1-dependent effects. Methods: Using C57BL/6-derived embryonic stem cells and standard gene targeting methods, we prepared C57BL/6 mice carrying the PAR1 mutation of R41 to Q. IIa-induced and APC-induced signaling, detected as phosphorylation of ERK1/2 or Akt in Brain Microvascular Endothelial Cells (BECs), was quantified using immunoblotting. BECs were obtained from homozygous 41QQ-PAR1 mice and wild type 41RR-littermates. Endothelial barrier disruption of cultured BECs was assayed using Trans-Endothelial Resistance (TER) assays (iCelligence, Acea, San Diego). Mortality of wild type and 41QQ-PAR1 mutant mice that was caused by live E. coli-induced pneumonia and to endotoxin was determined using standard methods. The ability of a cytoprotective-selective murine APC mutant (5A-APC) to reduce mortality of E.coli-challenged wild type and homozygous mutant mice was determined. Results: Upon breeding of R41Q-PAR1 heterozygous mice, the progeny did not fit a Mendelian pattern and yielded only 14% rather than 25% homozygous 41QQ mice. This reduced yield of homozygous mutant mice was similar to the previously reported low yield of homozygous PAR1 knockout mice. Homozygous 41QQ-PAR1 mice showed normal protein expression in BECs for PAR1 and endothelial cell protein C receptor (EPCR) antigens. When BECs from homozygous mutant mice were compared to those from wild type littermates, the IIa-induced vascular disruption in TER assays was greatly reduced by the mutation. Intracellular Ca2+ release, a hallmark of IIa-induced signaling, was greatly impaired (>90%) in BECs from homozygous mutant mice compared to wild type controls. IIa-induced phosphorylation of ERK1/2 in BECs was also significantly reduced by the mutation whereas APC-induced phosphorylation of Akt was not significantly affected. In murine sepsis-induced mortality studies, homozygosity for the R41Q-PAR1 mutation conveyed considerable resistance to death induced by either E. coli pneumonia or endotoxin in female mice but not in male mice. Tests to determine whether 5A-APC rescued male mice from sepsis-induced lethality showed that homozygous 41QQ-PAR1 mice were entirely responsive to 5A-APC therapy because 5A-APC treatment reduced mortality from 50 % to 0 % (see Figure). Wild type control mice also showed a beneficial response with reduced mortality in response to 5A-APC therapy, as previously described. Conclusions: These studies show that mutation of Arg41 to Gln in murine PAR1 diminishes or eliminates signaling induced by IIa but not by APC. Moreover, the ability of cytoprotective-selective 5A-APC to reduce bacteria-induced septic mortality in 41QQ-PAR1 mutant mice provides strong in vivo proof-of-concept data for PAR1 activation caused by non-canonical cleavage by APC. In summary, the 41QQ-PAR1 mutant mouse provides a unique and powerful tool to define in vivo requirements for cleavage sites that enable PAR1 signaling activities induced by IIa, APC or other proteases. Figure 1 Figure 1. Disclosures Mosnier: The Scripps Research Institute : The Scripps Research Institute Patents & Royalties. Griffin:The Scripps Research Institute: The Scripps Research Institute Patents & Royalties.


2004 ◽  
Vol 24 (17) ◽  
pp. 7548-7558 ◽  
Author(s):  
Akihira Ohtoshi ◽  
Richard R. Behringer

ABSTRACT Dmbx1 encodes a paired-like homeodomain protein that is expressed in developing neural tissues during mouse embryogenesis. To elucidate the in vivo role of Dmbx1, we generated two Dmbx1 mutant alleles. Dmbx1− lacks the homeobox and Dmbx1z is an insertion of a lacZ reporter gene. Dmbx1z appears to be a faithful reporter of Dmbx1 expression during embryogenesis and after birth. Dmbx1-lacZ expression was detected in the superior colliculus, cerebellar nuclei, and subpopulations of the medulla oblongata and spinal cord. Some Dmbx1 homozygous mutant mice died during the neonatal period, while others survived to adulthood; however, their growth was impaired. Both heterozygous and homozygous mutant offspring from Dmbx1 homozygous mutant females exhibited a low survival rate and poor growth. However, even wild-type pups fostered onto Dmbx1 homozygous mutant females grew poorly, suggesting a Dmbx1-dependent nursing defect. Dmbx1 mutant mice had an aberrant Dmbx1-lacZ expression pattern in the nervous system, indicating that they had abnormal brain development. These results demonstrate that Dmbx1 is required for postnatal survival, growth, and brain development.


2005 ◽  
Vol 73 (12) ◽  
pp. 8429-8432 ◽  
Author(s):  
Lauren E. Yauch ◽  
Michael K. Mansour ◽  
Stuart M. Levitz

ABSTRACT Cryptococcus neoformans capsular glucuronoxylomannan (GXM) is shed during cryptococcosis and taken up by macrophages. The roles of the putative GXM receptors CD14, CD18, Toll-like receptor 2 (TLR2), and TLR4 in GXM clearance from serum and deposition in the liver and spleen in receptor-deficient mice were studied. While alterations in the kinetics of GXM redistribution were seen in the mutant mice, none of the receptors was absolutely required for serum clearance or hepatosplenic accumulation.


2004 ◽  
Vol 24 (2) ◽  
pp. 584-594 ◽  
Author(s):  
Choogon Lee ◽  
David R. Weaver ◽  
Steven M. Reppert

ABSTRACT The mPER1 and mPER2 proteins have important roles in the circadian clock mechanism, whereas mPER3 is expendable. Here we examine the posttranslational regulation of mPER3 in vivo in mouse liver and compare it to the other mPER proteins to define the salient features required for clock function. Like mPER1 and mPER2, mPER3 is phosphorylated, changes cellular location, and interacts with other clock proteins in a time-dependent manner. Consistent with behavioral data from mPer2/3 and mPer1/3 double-mutant mice, either mPER1 or mPER2 alone can sustain rhythmic posttranslational events. However, mPER3 is unable to sustain molecular rhythmicity in mPer1/2 double-mutant mice. Indeed, mPER3 is always cytoplasmic and is not phosphorylated in the livers of mPer1-deficient mice, suggesting that mPER3 is regulated by mPER1 at a posttranslational level. In vitro studies with chimeric proteins suggest that the inability of mPER3 to support circadian clock function results in part from lack of direct and stable interaction with casein kinase Iε (CKIε). We thus propose that the CKIε-binding domain is critical not only for mPER phosphorylation but also for a functioning circadian clock.


Sign in / Sign up

Export Citation Format

Share Document