scholarly journals MDM2 Promotes Ubiquitination and Degradation of MDMX

2003 ◽  
Vol 23 (15) ◽  
pp. 5113-5121 ◽  
Author(s):  
Yu Pan ◽  
Jiandong Chen

ABSTRACT The p53 tumor suppressor is regulated by MDM2-mediated ubiquitination and degradation. Mitogenic signals activate p53 by induction of ARF expression, which inhibits p53 ubiquitination by MDM2. Recent studies showed that the MDM2 homolog MDMX is also an important regulator of p53. We present evidence that MDM2 promotes MDMX ubiquitination and degradation by the proteasomes. This effect is stimulated by ARF and correlates with the ability of ARF to bind MDM2. Promotion of MDM2-mediated MDMX ubiquitination requires the N-terminal domain of ARF, which normally inhibits MDM2 ubiquitination of p53. An intact RING domain of MDM2 is also required, both to interact with MDMX and to provide E3 ligase function. Increase of MDM2 and ARF levels by DNA damage, recombinant ARF adenovirus infection, or inducible MDM2 expression leads to proteasome-mediated down-regulation of MDMX levels. Therefore, MDMX and MDM2 are coordinately regulated by stress signals. The ARF tumor suppressor differentially regulates the ability of MDM2 to promote p53 and MDMX ubiquitination and activates p53 by targeting both members of the MDM2 family.

2002 ◽  
Vol 22 (21) ◽  
pp. 7562-7571 ◽  
Author(s):  
Changgong Li ◽  
Lihong Chen ◽  
Jiandong Chen

ABSTRACT The MDM2 homolog MDMX is an important regulator of p53 activity during embryonic development. MDMX inactivation in mice results in embryonic lethality in a p53-dependent fashion. The expression level of MDMX is not induced by DNA damage, and its role in stress response is unclear. We show here that ectopically expressed MDMX is mainly localized in the cytoplasm. DNA damage promotes nuclear translocation of MDMX in cells with or without p53. Coexpression of MDM2 or p53 is sufficient to induce MDMX nuclear translocation, suggesting that activation of p53 and induction of MDM2 expression can contribute to this process. Stable transfection of MDMX into U2OS cells does not alter p53 level but results in reduced p53 DNA-binding activity and reduced MDM2 expression. The ability of ARF (alternate reading frame of INK4a) to activate p53 is also significantly inhibited by expression of MDMX. These results suggest that MDMX function may be regulated by DNA damage. Furthermore, MDMX may complement MDM2 in regulating p53 during embryonic development due to its ability to inhibit p53 in the presence of ARF.


2011 ◽  
Vol 441 (1) ◽  
pp. 227-236 ◽  
Author(s):  
Xin Zhou ◽  
Ting-Ting Li ◽  
Xu Feng ◽  
Esther Hsiang ◽  
Yue Xiong ◽  
...  

RASSF1A [Ras association (RalGDS/AF-6) domain family member 1A] and RASSF1C are two ubiquitously expressed isoforms of the RASSF1 gene. The promoter of RASSF1A is frequently hypermethylated, resulting in inactivation in various human cancers. RASSF1A is implicated in the regulation of apoptosis, microtubule stability and cell cycle arrest. However, little is known about the regulation and function of RASSF1C. In the present study we show that exogenously expressed RASSF1C is a very unstable protein that is highly polyubiquitylated and degraded via the proteasome. Furthermore, RASSF1C degradation is enhanced when cells are exposed to stress signals, such as UV irradiation. Mule, a HECT (homologous with E6-associated protein C-terminus) family E3 ligase, but not SCFβ-TrCP [where SCF is Skp1 (S-phase kinase-associated protein 1)/cullin/F-box and β-TrCP is β-bransducin repeat-containing protein] or CUL4 (cullin 4)-DDB1 (damage-specific DNA-binding protein 1), is the E3 ligase for RASSF1C under normal conditions, whereas both Mule and SCFβ-TrCP target RASSF1C degradation in response to UV irradiation. GSK3 (glycogen synthase kinase 3) phosphorylates RASSF1C to promote RASSF1C degradation subsequently, which is negatively regulated by the PI3K (phosphoinositide 3-kinase)/Akt pathway. Thus the present study reveals a novel regulation of RASSF1C and the potentially important role of RASSF1C in DNA damage responses.


Cancer Cell ◽  
2014 ◽  
Vol 26 (2) ◽  
pp. 235-247 ◽  
Author(s):  
Laura A. Tollini ◽  
Aiwen Jin ◽  
Jikyoung Park ◽  
Yanping Zhang
Keyword(s):  

2021 ◽  
Vol 22 (10) ◽  
pp. 5195
Author(s):  
Hui Zhang

In eukaryotic cells, DNA replication licensing is precisely regulated to ensure that the initiation of genomic DNA replication in S phase occurs once and only once for each mitotic cell division. A key regulatory mechanism by which DNA re-replication is suppressed is the S phase-dependent proteolysis of Cdt1, an essential replication protein for licensing DNA replication origins by loading the Mcm2-7 replication helicase for DNA duplication in S phase. Cdt1 degradation is mediated by CRL4Cdt2 ubiquitin E3 ligase, which further requires Cdt1 binding to proliferating cell nuclear antigen (PCNA) through a PIP box domain in Cdt1 during DNA synthesis. Recent studies found that Cdt2, the specific subunit of CRL4Cdt2 ubiquitin E3 ligase that targets Cdt1 for degradation, also contains an evolutionarily conserved PIP box-like domain that mediates the interaction with PCNA. These findings suggest that the initiation and elongation of DNA replication or DNA damage-induced repair synthesis provide a novel mechanism by which Cdt1 and CRL4Cdt2 are both recruited onto the trimeric PCNA clamp encircling the replicating DNA strands to promote the interaction between Cdt1 and CRL4Cdt2. The proximity of PCNA-bound Cdt1 to CRL4Cdt2 facilitates the destruction of Cdt1 in response to DNA damage or after DNA replication initiation to prevent DNA re-replication in the cell cycle. CRL4Cdt2 ubiquitin E3 ligase may also regulate the degradation of other PIP box-containing proteins, such as CDK inhibitor p21 and histone methylase Set8, to regulate DNA replication licensing, cell cycle progression, DNA repair, and genome stability by directly interacting with PCNA during DNA replication and repair synthesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer M. Peña ◽  
Samantha M. Prezioso ◽  
Kirsty A. McFarland ◽  
Tracy K. Kambara ◽  
Kathryn M. Ramsey ◽  
...  

AbstractIn Pseudomonas aeruginosa the alp system encodes a programmed cell death pathway that is switched on in a subset of cells in response to DNA damage and is linked to the virulence of the organism. Here we show that the central regulator of this pathway, AlpA, exerts its effects by acting as an antiterminator rather than a transcription activator. In particular, we present evidence that AlpA positively regulates the alpBCDE cell lysis genes, as well as genes in a second newly identified target locus, by recognizing specific DNA sites within the promoter, then binding RNA polymerase directly and allowing it to bypass intrinsic terminators positioned downstream. AlpA thus functions in a mechanistically unusual manner to control the expression of virulence genes in this opportunistic pathogen.


2019 ◽  
Vol 116 (39) ◽  
pp. 19552-19562 ◽  
Author(s):  
Justine Sitz ◽  
Sophie Anne Blanchet ◽  
Steven F. Gameiro ◽  
Elise Biquand ◽  
Tia M. Morgan ◽  
...  

High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell’s DNA replication and repair machineries to replicate their own genomes. How this host–pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.


2001 ◽  
Vol 276 (14) ◽  
pp. 10641-10645 ◽  
Author(s):  
Giovanna Damia ◽  
Yolanda Sanchez ◽  
Eugenio Erba ◽  
Massimo Broggini
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document