scholarly journals SHP-2 Positively Regulates Myogenesis by Coupling to the Rho GTPase Signaling Pathway

2004 ◽  
Vol 24 (12) ◽  
pp. 5340-5352 ◽  
Author(s):  
Maria I. Kontaridis ◽  
Seda Eminaga ◽  
Mara Fornaro ◽  
Christina Ivins Zito ◽  
Raffaella Sordella ◽  
...  

ABSTRACT Myogenesis is an intricate process that coordinately engages multiple intracellular signaling cascades. The Rho family GTPase RhoA is known to promote myogenesis, however, the mechanisms controlling its regulation in myoblasts have yet to be fully elucidated. We show here that the SH2-containing protein tyrosine phosphatase, SHP-2, functions as an early modulator of myogenesis by regulating RhoA. When MyoD was expressed in fibroblasts lacking functional SHP-2, muscle-specific gene activity was impaired and abolition of SHP-2 expression by RNA interference inhibited muscle differentiation. By using SHP-2 substrate-trapping mutants, we identified p190-B RhoGAP as a SHP-2 substrate. When dephosphorylated, p190-B RhoGAP has been shown to stimulate the activation of RhoA. During myogenesis, p190-B RhoGAP was tyrosyl dephosphorylated concomitant with the stimulation of SHP-2's phosphatase activity. Moreover, overexpression of a catalytically inactive mutant of SHP-2 inhibited p190-B RhoGAP tyrosyl dephosphorylation, RhoA activity, and myogenesis. These observations strongly suggest that SHP-2 dephosphorylates p190-B RhoGAP, leading to the activation of RhoA. Collectively, these data provide a mechanistic basis for RhoA activation in myoblasts and demonstrate that myogenesis is critically regulated by the actions of SHP-2 on the p190-B Rho GAP/RhoA pathway.

2020 ◽  
Author(s):  
Ryan Ard ◽  
Jean-Christian Maillet ◽  
Elias Daher ◽  
Michael Phan ◽  
Radoslav Zinoviev ◽  
...  

AbstractCells can switch between Rac1, lamellipodia-based and RhoA, blebbing-based migration modes but the molecular mechanisms regulating this choice are not fully understood. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, forms independent complexes with Rac1 and RhoA, selectively dissociating each from RhoGDI. DGKζ catalytic activity is required for Rac1 dissociation but is dispensable for RhoA dissociation. Instead, DGKζ functions as a scaffold that stimulates RhoA release by enhancing RhoGDI phosphorylation by protein kinase Cα (PKCα). Here, PKCα-mediated phosphorylation of the DGKζ MARCKS domain increased DGKζ association with RhoA and decreased its interaction with Rac1. The same modification increased binding of the DGKζ C-terminus to the α1-syntrophin PDZ domain. Expression of a phosphomimetic DGKζ mutant stimulated membrane blebbing in mouse embryonic fibroblasts and C2C12 myoblasts, which was augmented by inhibition of endogenous Rac1. DGKζ expression in differentiated C2 myotubes, which have low endogenous Rac1 levels, also induced substantial membrane blebbing via the Rho-ROCK pathway. These events were independent of DGKζ catalytic activity, but dependent upon a functional C-terminal PDZ-binding motif. Rescue of RhoA activity in DGKζ-null cells required the PDZ-binding motif, suggesting syntrophin interaction is necessary for optimal RhoA activation. Collectively, our results define a switch-like mechanism involving DGKζ phosphorylation by PKCα that favours RhoA-driven blebbing over Rac1-driven lamellipodia formation and macropinocytosis. These findings provide a mechanistic basis for the effect of PKCα signaling on Rho GTPase activity and suggest PKCα activity plays a role in the interconversion between Rac1 and RhoA signaling that underlies different migration modes.


2000 ◽  
Vol 10 (23) ◽  
pp. 1523-1526 ◽  
Author(s):  
Simone M. Schoenwaelder ◽  
Leslie A. Petch ◽  
David Williamson ◽  
Randy Shen ◽  
Gen-Sheng Feng ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 6924
Author(s):  
Andrew M. Mattei ◽  
Jonathan D. Smailys ◽  
Emma Marie Wilber Hepworth ◽  
Shantá D. Hinton

The pseudophosphatases, atypical members of the protein tyrosine phosphatase family, have emerged as bona fide signaling regulators within the past two decades. Their roles as regulators have led to a renaissance of the pseudophosphatase and pseudoenyme fields, catapulting interest from a mere curiosity to intriguing and relevant proteins to investigate. Pseudophosphatases make up approximately fourteen percent of the phosphatase family, and are conserved throughout evolution. Pseudophosphatases, along with pseudokinases, are important players in physiology and pathophysiology. These atypical members of the protein tyrosine phosphatase and protein tyrosine kinase superfamily, respectively, are rendered catalytically inactive through mutations within their catalytic active signature motif and/or other important domains required for catalysis. This new interest in the pursuit of the relevant functions of these proteins has resulted in an elucidation of their roles in signaling cascades and diseases. There is a rapid accumulation of knowledge of diseases linked to their dysregulation, such as neuropathies and various cancers. This review analyzes the involvement of pseudophosphatases in diseases, highlighting the function of various role(s) of pseudophosphatases involvement in pathologies, and thus providing a platform to strongly consider them as key therapeutic drug targets.


Author(s):  
Archanalakshmi Kambaru ◽  
Nidhee Chaudhary

: Protein Tyrosine Phosphatase (PTP) superfamily is a key enzyme involved in the regulation of growth-related cell signaling cascades, such as the RAS/MAPK pathway, that directly affect cancer cell growth and metastasis. Several studies have indicated that the drug resistance observed in several late-stage tumors might also be affected by the levels of PTP in the cell. Hence, these phosphatases have been in the limelight for the past few decades as potential drug-targets and several promising drug candidates have been developed, even though none of these drugs have reached the market yet. In this review, we explore the potential of PTP as a viable anti-cancer drug target by studying PTPs, their regulation of several key cancer cell signaling pathways and how their levels affect various types of cancer. Furthermore, we present the current scenario of PTP as a molecular target and the various challenges faced in the development of PTP-targeting anti-cancer drugs.


2000 ◽  
Vol 20 (16) ◽  
pp. 5917-5929 ◽  
Author(s):  
Guoqiang Jiang ◽  
Jeroen den Hertog ◽  
Tony Hunter

ABSTRACT We reported previously that the N-terminal D1 catalytic domain of receptor protein-tyrosine phosphatase α (RPTPα) forms a symmetrical, inhibited dimer in a crystal structure, in which a helix-turn-helix wedge element from one monomer is inserted into the catalytic cleft of the other monomer. Previous functional studies also suggested that dimerization inhibits the biological activity of a CD45 chimeric RPTP and the catalytic activity of an isolated RPTPς D1 catalytic domain. Most recently, we have also shown that enforced dimerization inhibits the biological activity of full-length RPTPα in a wedge-dependent manner. The physiological significance of such inhibition is unknown, due to a lack of understanding of how RPTPα dimerization is regulated in vivo. In this study, we show that transiently expressed cell surface RPTPα exists predominantly as homodimers, suggesting that dimerization-mediated inhibition of RPTPα biological activity is likely to be physiologically relevant. Consistent with our published and unpublished crystallographic data, we show that mutations in the wedge region of D1 catalytic domain and deletion of the entire D2 catalytic domain independently reduced but did not abolish RPTPα homodimerization, suggesting that both domains are critically involved but that neither is essential for homodimerization. Finally, we also provide evidence that both the RPTPα extracellular domain and the transmembrane domain were independently able to homodimerize. These results lead us to propose a zipper model in which inactive RPTPα dimers are stabilized by multiple, relatively weak dimerization interfaces. Dimerization in this manner would provide a potential mechanism for negative regulation of RPTPα. Such RPTPα dimers could be activated by extracellular ligands or intracellular binding proteins that induce monomerization or by intracellular signaling events that induce an open conformation of the dimer.


2019 ◽  
Vol 218 (10) ◽  
pp. 3436-3454 ◽  
Author(s):  
Sarah Klapproth ◽  
Thomas Bromberger ◽  
Clara Türk ◽  
Marcus Krüger ◽  
Markus Moser

Binding of kindlins to integrins is required for integrin activation, stable ligand binding, and subsequent intracellular signaling. How hematopoietic kindlin-3 contributes to the assembly and stability of the adhesion complex is not known. Here we report that kindlin-3 recruits leupaxin into podosomes and thereby regulates paxillin phosphorylation and podosome turnover. We demonstrate that the activity of the protein tyrosine phosphatase PTP-PEST, which controls paxillin phosphorylation, requires leupaxin. In contrast, despite sharing the same binding mode with leupaxin, paxillin recruitment into podosomes is kindlin-3 independent. Instead, we found paxillin together with talin and vinculin in initial adhesion patches of kindlin-3–null cells. Surprisingly, despite its presence in these early adhesion patches, podosomes can form in the absence of paxillin or any paxillin member. In conclusion, our findings show that kindlin-3 not only activates and clusters integrins into podosomes but also regulates their lifetime by recruiting leupaxin, which controls PTP-PEST activity and thereby paxillin phosphorylation and downstream signaling.


2000 ◽  
Vol 279 (4) ◽  
pp. L733-L742 ◽  
Author(s):  
Elizabeth O. Harrington ◽  
Anthony Smeglin ◽  
Nancy Parks ◽  
Julie Newton ◽  
Sharon Rounds

Endothelial cell (EC) apoptosis is important in vascular injury, repair, and angiogenesis. Homocysteine and/or adenosine exposure of ECs causes apoptosis. Elevated homocysteine or adenosine occurs in disease states such as homocysteinuria and tissue necrosis, respectively. We examined the intracellular signaling mechanisms involved in this pathway of EC apoptosis. Inhibition of protein tyrosine phosphatase (PTPase) attenuated homocysteine- and/or adenosine-induced apoptosis and completely blocked apoptosis induced by the inhibition of S-adenosylhomocysteine hydrolase with MDL-28842. Consistent with this finding, the tyrosine kinase inhibitor genistein enhanced apoptosis in adenosine-treated ECs. Adenosine significantly elevated the PTPase activity in the ECs. Mitogen-activated protein kinase activities were examined to identify possible downstream targets for the upregulated PTPase(s). Extracellular signal-regulated kinase (ERK) 1 activity was slightly elevated in adenosine-treated ECs, whereas ERK2, c-Jun NH2-terminal kinase-1, or p38β activities differed little. The mitogen-activated protein kinase-1 inhibitor PD-98059 enhanced DNA fragmentation, suggesting that increased ERK1 activity is a result but not a cause of apoptosis in adenosine-treated ECs. Adenosine-treated ECs had diminished p38α activity compared with control cells; this effect was blunted on PTPase inhibition. These results indicate that PTPase(s) plays an integral role in the induction of EC apoptosis upon exposure to homocysteine and/or adenosine, possibly by the attenuation of p38α activity.


Sign in / Sign up

Export Citation Format

Share Document