scholarly journals Human CNK1 Acts as a Scaffold Protein, Linking Rho and Ras Signal Transduction Pathways

2004 ◽  
Vol 24 (4) ◽  
pp. 1736-1746 ◽  
Author(s):  
Aron B. Jaffe ◽  
Pontus Aspenström ◽  
Alan Hall

ABSTRACT Rho family GTPases act as molecular switches to control a variety of cellular responses, including cytoskeletal rearrangements, changes in gene expression, and cell transformation. In the active, GTP-bound state, Rho interacts with an ever-growing number of effector molecules, which promote distinct biochemical pathways. Here, we describe the isolation of hCNK1, the human homologue of Drosophila connector enhancer of ksr, as an effector for Rho. hCNK1 contains several protein-protein interaction domains, and Rho interacts with one of these, the PH domain, in a GTP-dependent manner. A mutant hCNK1, which is unable to bind to Rho, or depletion of endogenous hCNK1 by using RNA interference inhibits Rho-induced gene expression via serum response factor but has no apparent effect on Rho-induced stress fiber formation, suggesting that it acts as a specific effector for transcriptional, but not cytoskeletal, activation pathways. Finally, hCNK1 associates with Rhophilin and RalGDS, Rho and Ras effector molecules, respectively, suggesting that it acts as a scaffold protein to mediate cross talk between the two pathways.

2001 ◽  
Vol 281 (3) ◽  
pp. C932-C940 ◽  
Author(s):  
Chenbo Zeng ◽  
Aubrey R. Morrison

Interleukin-1β (IL-1β) induces the inducible nitric oxide synthase (iNOS), resulting in the release of nitric oxide (NO) from glomerular mesangial cells. In this study, we demonstrated that disruption of F-actin formation by sequestration of G-actin with the toxin latrunculin B (LatB) dramatically potentiated IL-1β-induced iNOS protein expression in a dose-dependent manner. LatB by itself had little or no effect on iNOS expression. Staining of F-actin with nitrobenzoxadiazole (NBD)-phallacidin demonstrated that LatB significantly impaired F-actin stress fiber formation. Jasplakinolide (Jasp), which binds to and stabilizes F-actin, suppressed iNOS expression enhanced by LatB. These data strongly suggest that actin cytoskeletal dynamics regulates IL-1β-induced iNOS expression. We demonstrated that LatB decreases serum response factor (SRF) activity as determined by reporter gene assays, whereas Jasp increases SRF activity. The negative correlation between SRF activity and iNOS expression suggests a negative regulatory role for SRF in iNOS expression. Overexpression of a dominant negative mutant of SRF increases the IL-1β-induced iNOS expression, providing direct evidence that SRF inhibits iNOS expression.


2006 ◽  
Vol 27 (2) ◽  
pp. 622-632 ◽  
Author(s):  
Jun Wang ◽  
AnKang Li ◽  
ZhiGao Wang ◽  
XinHua Feng ◽  
Eric N. Olson ◽  
...  

ABSTRACT Myocardin, a serum response factor (SRF)-dependent cofactor, is a potent activator of smooth muscle gene activity but a poor activator of cardiogenic genes in pluripotent 10T1/2 fibroblasts. Posttranslational modification of GATA4, another myocardin cofactor, by sumoylation strongly activated cardiogenic gene activity. Here, we found that myocardin's activity was strongly enhanced by SUMO-1 via modification of a lysine residue primarily located at position 445 and that the conversion of this residue to arginine (K445R) impaired myocardin transactivation. PIAS1 was involved in governing myocardin activity via its E3 ligase activity that stimulated myocardin sumoylation on an atypical sumoylation site(s) and by its physical association with myocardin. Myocardin initiated the expression of cardiac muscle-specified genes, such as those encoding cardiac α-actin and α-myosin heavy chain, in an SRF-dependent manner in 10T1/2 fibroblasts, but only in the presence of coexpressed SUMO-1/PIAS1. Thus, SUMO modification acted as a molecular switch to promote myocardin's role in cardiogenic gene expression.


2020 ◽  
Vol 27 (33) ◽  
pp. 5530-5542
Author(s):  
Xiaoqing Ye ◽  
Gang Chen ◽  
Jia Jin ◽  
Binzhong Zhang ◽  
Yinda Wang ◽  
...  

Mixed Lineage Leukemia 1 (MLL1), an important member of Histone Methyltransferases (HMT) family, is capable of catalyzing mono-, di-, and trimethylation of Histone 3 lysine 4 (H3K4). The optimal catalytic activity of MLL1 requires the formation of a core complex consisting of MLL1, WDR5, RbBP5, and ASH2L. The Protein-Protein Interaction (PPI) between WDR5 and MLL1 plays an important role in abnormal gene expression during tumorigenesis, and disturbing this interaction may have a potential for the treatment of leukemia harboring MLL1 fusion proteins. In this review, we will summarize recent progress in the development of inhibitors targeting MLL1- WDR5 interaction.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Temitayo O. Idowu ◽  
Valerie Etzrodt ◽  
Thorben Pape ◽  
Joerg Heineke ◽  
Klaus Stahl ◽  
...  

Abstract Background Reduced endothelial Tie2 expression occurs in diverse experimental models of critical illness, and experimental Tie2 suppression is sufficient to increase spontaneous vascular permeability. Looking for a common denominator among different critical illnesses that could drive the same Tie2 suppressive (thereby leak inducing) phenotype, we identified “circulatory shock” as a shared feature and postulated a flow-dependency of Tie2 gene expression in a GATA3 dependent manner. Here, we analyzed if this mechanism of flow-regulation of gene expression exists in vivo in the absence of inflammation. Results To experimentally mimic a shock-like situation, we developed a murine model of clonidine-induced hypotension by targeting a reduced mean arterial pressure (MAP) of approximately 50% over 4 h. We found that hypotension-induced reduction of flow in the absence of confounding disease factors (i.e., inflammation, injury, among others) is sufficient to suppress GATA3 and Tie2 transcription. Conditional endothelial-specific GATA3 knockdown (B6-Gata3tm1-Jfz VE-Cadherin(PAC)-cerERT2) led to baseline Tie2 suppression inducing spontaneous vascular leak. On the contrary, the transient overexpression of GATA3 in the pulmonary endothelium (jet-PEI plasmid delivery platform) was sufficient to increase Tie2 at baseline and completely block its hypotension-induced acute drop. On the functional level, the Tie2 protection by GATA3 overexpression abrogated the development of pulmonary capillary leakage. Conclusions The data suggest that the GATA3–Tie2 signaling pathway might play a pivotal role in controlling vascular barrier function and that it is affected in diverse critical illnesses with shock as a consequence of a flow-regulated gene response. Targeting this novel mechanism might offer therapeutic opportunities to treat vascular leakage of diverse etiologies.


2021 ◽  
Vol 9 (2) ◽  
pp. 255
Author(s):  
Angelo Iacobino ◽  
Giovanni Piccaro ◽  
Manuela Pardini ◽  
Lanfranco Fattorini ◽  
Federico Giannoni

Previous studies on Escherichia coli demonstrated that sub-minimum inhibitory concentration (MIC) of fluoroquinolones induced the SOS response, increasing drug tolerance. We characterized the transcriptional response to moxifloxacin in Mycobacterium tuberculosis. Reference strain H37Rv was treated with moxifloxacin and gene expression studied by qRT-PCR. Five SOS regulon genes, recA, lexA, dnaE2, Rv3074 and Rv3776, were induced in a dose- and time-dependent manner. A range of moxifloxacin concentrations induced recA, with a peak observed at 2 × MIC (0.25 μg/mL) after 16 h. Another seven SOS responses and three DNA repair genes were significantly induced by moxifloxacin. Induction of recA by moxifloxacin was higher in log-phase than in early- and stationary-phase cells, and absent in dormant bacilli. Furthermore, in an H37Rv fluoroquinolone-resistant mutant carrying the D94G mutation in the gyrA gene, the SOS response was induced at drug concentrations higher than the mutant MIC value. The 2 × MIC of moxifloxacin determined no significant changes in gene expression in a panel of 32 genes, except for up-regulation of the relK toxin and of Rv3290c and Rv2517c, two persistence-related genes. Overall, our data show that activation of the SOS response by moxifloxacin, a likely link to increased mutation rate and persister formation, is time, dose, physiological state and, possibly, MIC dependent.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farjana Saiada ◽  
Kun Zhang ◽  
Renfeng Li

Abstract Background Sterile alpha motif and HD domain 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase (dNTPase) that restricts the infection of a variety of RNA and DNA viruses, including herpesviruses. The anti-viral function of SAMHD1 is associated with its dNTPase activity, which is regulated by several post-translational modifications, including phosphorylation, acetylation and ubiquitination. Our recent studies also demonstrated that the E3 SUMO ligase PIAS1 functions as an Epstein-Barr virus (EBV) restriction factor. However, whether SAMHD1 is regulated by PIAS1 to restrict EBV replication remains unknown. Results In this study, we showed that PIAS1 interacts with SAMHD1 and promotes its SUMOylation. We identified three lysine residues (K469, K595 and K622) located on the surface of SAMHD1 as the major SUMOylation sites. We demonstrated that phosphorylated SAMHD1 can be SUMOylated by PIAS1 and SUMOylated SAMHD1 can also be phosphorylated by viral protein kinases. We showed that SUMOylation-deficient SAMHD1 loses its anti-EBV activity. Furthermore, we demonstrated that SAMHD1 is associated with EBV genome in a PIAS1-dependent manner. Conclusion Our study reveals that PIAS1 synergizes with SAMHD1 to inhibit EBV lytic replication through protein–protein interaction and SUMOylation.


2021 ◽  
Vol 22 (10) ◽  
pp. 5322
Author(s):  
Nitika Kandhari ◽  
Calvin A. Kraupner-Taylor ◽  
Paul F. Harrison ◽  
David R. Powell ◽  
Traude H. Beilharz

Alternative transcript cleavage and polyadenylation is linked to cancer cell transformation, proliferation and outcome. This has led researchers to develop methods to detect and bioinformatically analyse alternative polyadenylation as potential cancer biomarkers. If incorporated into standard prognostic measures such as gene expression and clinical parameters, these could advance cancer prognostic testing and possibly guide therapy. In this review, we focus on the existing methodologies, both experimental and computational, that have been applied to support the use of alternative polyadenylation as cancer biomarkers.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lydia Ntari ◽  
Christoforos Nikolaou ◽  
Ksanthi Kranidioti ◽  
Dimitra Papadopoulou ◽  
Eleni Christodoulou-Vafeiadou ◽  
...  

Abstract Background New medications for Rheumatoid Arthritis (RA) have emerged in the last decades, including Disease Modifying Antirheumatic Drugs (DMARDs) and biologics. However, there is no known cure, since a significant proportion of patients remain or become non-responders to current therapies. The development of new mode-of-action treatment schemes involving combination therapies could prove successful for the treatment of a greater number of RA patients. Methods We investigated the effect of the Tyrosine Kinase inhibitors (TKIs) dasatinib and bosutinib, on the human TNF-dependent Tg197 arthritis mouse model. The inhibitors were administered either as a monotherapy or in combination with a subtherapeutic dose of anti-hTNF biologics and their therapeutic effect was assessed clinically, histopathologically as well as via gene expression analysis and was compared to that of an efficient TNF monotherapy. Results Dasatinib and, to a lesser extent, bosutinib inhibited the production of TNF and proinflammatory chemokines from arthritogenic synovial fibroblasts. Dasatinib, but not bosutinib, also ameliorated significantly and in a dose-dependent manner both the clinical and histopathological signs of Tg197 arthritis. Combination of dasatinib with a subtherapeutic dose of anti-hTNF biologic agents, resulted in a synergistic inhibitory effect abolishing all arthritis symptoms. Gene expression analysis of whole joint tissue of Tg197 mice revealed that the combination of dasatinib with a low subtherapeutic dose of Infliximab most efficiently restores the pathogenic gene expression profile to that of the healthy state compared to either treatment administered as a monotherapy. Conclusion Our findings show that dasatinib exhibits a therapeutic effect in TNF-driven arthritis and can act in synergy with a subtherapeutic anti-hTNF dose to effectively treat the clinical and histopathological signs of the pathology. The combination of dasatinib and anti-hTNF exhibits a distinct mode of action in restoring the arthritogenic gene signature to that of a healthy profile. Potential clinical applications of combination therapies with kinase inhibitors and anti-TNF agents may provide an interesting alternative to high-dose anti-hTNF monotherapy and increase the number of patients responding to treatment.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 772
Author(s):  
Seonghun Kim ◽  
Seockhun Bae ◽  
Yinhua Piao ◽  
Kyuri Jo

Genomic profiles of cancer patients such as gene expression have become a major source to predict responses to drugs in the era of personalized medicine. As large-scale drug screening data with cancer cell lines are available, a number of computational methods have been developed for drug response prediction. However, few methods incorporate both gene expression data and the biological network, which can harbor essential information about the underlying process of the drug response. We proposed an analysis framework called DrugGCN for prediction of Drug response using a Graph Convolutional Network (GCN). DrugGCN first generates a gene graph by combining a Protein-Protein Interaction (PPI) network and gene expression data with feature selection of drug-related genes, and the GCN model detects the local features such as subnetworks of genes that contribute to the drug response by localized filtering. We demonstrated the effectiveness of DrugGCN using biological data showing its high prediction accuracy among the competing methods.


Sign in / Sign up

Export Citation Format

Share Document