scholarly journals p38 Mitogen-Activated Protein Kinase Mediates the Fas-Induced Mitochondrial Death Pathway in CD8+ T Cells

2006 ◽  
Vol 26 (6) ◽  
pp. 2118-2129 ◽  
Author(s):  
Nicholas Farley ◽  
Gustavo Pedraza-Alva ◽  
Diego Serrano-Gomez ◽  
Viswas Nagaleekar ◽  
Alexander Aronshtam ◽  
...  

ABSTRACT The p38 mitogen-activated protein kinase (MAPK) signaling pathway can be activated by a variety of stress stimuli such as UV radiation and osmotic stress. The regulation and role of this pathway in death receptor-induced apoptosis remain unclear and may depend on the specific death receptor and cell type. Here we show that binding of Fas ligand to Fas activates p38 MAPK in CD8+ T cells and that activation of this pathway is required for Fas-mediated CD8+ T-cell death. Active p38 MAPK phosphorylates Bcl-xL and Bcl-2 and prevents the accumulation of these antiapoptotic molecules within the mitochondria. Consequently, a loss of mitochondrial membrane potential and the release of cytochrome c lead to the activation of caspase 9 and, subsequently, caspase 3. Therefore, the activation of p38 MAPK is a critical link between Fas and the mitochondrial death pathway and is required for the Fas-induced apoptosis of CD8+ T cells.

2000 ◽  
Vol 191 (6) ◽  
pp. 1017-1030 ◽  
Author(s):  
Jian Zhang ◽  
Jian-Xin Gao ◽  
Kostantin Salojin ◽  
Qing Shao ◽  
Marsha Grattan ◽  
...  

Activation-induced cell death (AICD) is a mechanism of peripheral T cell tolerance that depends upon an interaction between Fas and Fas ligand (FasL). Although c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) may be involved in apoptosis in various cell types, the mode of regulation of FasL expression during AICD in T cells by these two MAPKs is incompletely understood. To investigate the regulatory roles of these two MAPKs, we analyzed the kinetics of TCR-induced p38 MAPK and JNK activity and their regulation of FasL expression and AICD. We report that both JNK and p38 MAPK regulate AICD in T cells. Our data suggest a novel model of T cell AICD in which p38 MAPK acts early to initiate FasL expression and the Fas-mediated activation of caspases. Subsequently, caspases stimulate JNK to further upregulate FasL expression. Thus, p38 MAPK and downstream JNK converge to regulate FasL expression at different times after T cell receptor stimulation to elicit maximum AICD.


2000 ◽  
Vol 192 (5) ◽  
pp. 647-658 ◽  
Author(s):  
Andreas Villunger ◽  
Lorraine A. O'Reilly ◽  
Nils Holler ◽  
Jerry Adams ◽  
Andreas Strasser

The short life span of granulocytes, which limits many inflammatory responses, is thought to be influenced by the Bcl-2 protein family, death receptors such as CD95 (Fas/APO-1), stress-activated protein kinases such as p38 mitogen-activated protein kinase (MAPK), and proinflammatory cytokines like granulocyte colony-stimulating factor (G-CSF). To clarify the roles of these various regulators in granulocyte survival, we have investigated the spontaneous apoptosis of granulocytes in culture and that induced by Fas ligand or chemotherapeutic drugs, using cells from normal, CD95-deficient lpr, or vav-bcl-2 transgenic mice. CD95-induced apoptosis, which required receptor aggregation by recombinant Fas ligand or the membrane-bound ligand, was unaffected by G-CSF treatment or Bcl-2 overexpression. Conversely, spontaneous and drug-induced apoptosis occurred normally in lpr granulocytes but were suppressed by G-CSF treatment or Bcl-2 overexpression. Although activation of p38 MAPK has been implicated in granulocyte death, their apoptosis actually was markedly accelerated by specific inhibitors of this kinase. These results suggest that G-CSF promotes granulocyte survival largely through the Bcl-2–controlled pathway, whereas CD95 regulates a distinct pathway to apoptosis that is not required for either their spontaneous or drug-induced death. Moreover, p38 MAPK signaling contributes to granulocyte survival rather than their apoptosis.


2011 ◽  
Vol 300 (1) ◽  
pp. E103-E110 ◽  
Author(s):  
Xiaoban Xin ◽  
Lijun Zhou ◽  
Caleb M. Reyes ◽  
Feng Liu ◽  
Lily Q. Dong

The adaptor protein APPL1 mediates the stimulatory effect of adiponectin on p38 mitogen-activated protein kinase (MAPK) signaling, yet the underlying mechanism remains unclear. Here we show that, in C2C12 cells, overexpression or suppression of APPL1 enhanced or suppressed, respectively, adiponectin-stimulated p38 MAPK upstream kinase cascade, consisting of transforming growth factor-β-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase 3 (MKK3). In vitro affinity binding and coimmunoprecipitation experiments revealed that TAK1 and MKK3 bind to different regions of APPL1, suggesting that APPL1 functions as a scaffolding protein to facilitate adiponectin-stimulated p38 MAPK activation. Interestingly, suppressing APPL1 had no effect on TNFα-stimulated p38 MAPK phosphorylation in C2C12 myotubes, indicating that the stimulatory effect of APPL1 on p38 MAPK activation is selective. Taken together, our study demonstrated that the TAK1-MKK3 cascade mediates adiponectin signaling and uncovers a scaffolding role of APPL1 in regulating the TAK1-MKK3-p38 MAPK pathway, specifically in response to adiponectin stimulation.


2019 ◽  
Vol 12 ◽  
pp. 117863611986459 ◽  
Author(s):  
Jessica Gräb ◽  
Jan Rybniker

The p38 mitogen-activated protein kinase (MAPK) is involved in a multitude of essential cellular processes. The kinase is activated in response to environmental stresses, including bacterial infections and inflammation, to regulate the immune response of the host. However, recent studies have demonstrated that pathogens can manipulate p38 MAPK signaling for their own benefit to either prevent or induce host cell apoptosis. In addition, there is evidence demonstrating that p38 MAPK is a potent trigger of pathogen-induced necrosis driven by mitochondrial membrane disruption. Given the large number of p38 MAPK inhibitors that have been tested in clinical trials, these findings provide an opportunity to repurpose these drugs for improved control of infectious diseases.


2009 ◽  
Vol 133 (11) ◽  
pp. 1850-1856
Author(s):  
Yongdong Feng ◽  
Jianguo Wen ◽  
Chung-Che(Jeff) Chang

Abstract Context.—p38 mitogen-activated protein kinase (MAPK) signaling has been implicated in responses ranging from apoptosis to cell cycle, induction of expression of cytokine genes, and differentiation. This plethora of activators conveys the complexity of the p38 pathway. This complexity is further complicated by the observation that the downstream effects of p38 MAPK activation may be different depending on types of stimuli, cell types, and various p38 MAPK isoforms involved. Objective.—This review focuses on the recent advancement of the p38 MAPK isoforms as well as the roles of p38 MAPK in hematologic malignancies. Data Sources.—Review of pertinent published literature and work in our laboratory. Conclusions.—In some hematologic malignancies, activation of p38 plays a key role in promoting or inhibiting proliferation and also in increasing resistance to chemotherapeutic agents. The importance of different p38 isoforms in various cellular functions has been acknowledged recently. Further understanding of these isoforms will allow the design of more specific inhibitors to target particular isoforms to maximize the treatment effect and minimize the side effects for treating hematopoietic malignancies.


2013 ◽  
Vol 288 (23) ◽  
pp. 17030-17041 ◽  
Author(s):  
Premanand C. Sundivakkam ◽  
Viswanathan Natarajan ◽  
Asrar B. Malik ◽  
Chinnaswamy Tiruppathi

The Ca2+ sensor STIM1 is crucial for activation of store-operated Ca2+ entry (SOCE) through transient receptor potential canonical and Orai channels. STIM1 phosphorylation serves as an “off switch” for SOCE. However, the signaling pathway for STIM1 phosphorylation is unknown. Here, we show that SOCE activates AMP-activated protein kinase (AMPK); its effector p38β mitogen-activated protein kinase (p38β MAPK) phosphorylates STIM1, thus inhibiting SOCE in human lung microvascular endothelial cells. Activation of AMPK using 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) resulted in STIM1 phosphorylation on serine residues and prevented protease-activated receptor-1 (PAR-1)-induced Ca2+ entry. Furthermore, AICAR pretreatment blocked PAR-1-induced increase in the permeability of mouse lung microvessels. Activation of SOCE with thrombin caused phosphorylation of isoform α1 but not α2 of the AMPK catalytic subunit. Moreover, knockdown of AMPKα1 augmented SOCE induced by thrombin. Interestingly, SB203580, a selective inhibitor of p38 MAPK, blocked STIM1 phosphorylation and led to sustained STIM1-puncta formation and Ca2+ entry. Of the three p38 MAPK isoforms expressed in endothelial cells, p38β knockdown prevented PAR-1-mediated STIM1 phosphorylation and potentiated SOCE. In addition, inhibition of the SOCE downstream target CaM kinase kinase β (CaMKKβ) or knockdown of AMPKα1 suppressed PAR-1-mediated phosphorylation of p38β and hence STIM1. Thus, our findings demonstrate that SOCE activates CaMKKβ-AMPKα1-p38β MAPK signaling to phosphorylate STIM1, thereby suppressing endothelial SOCE and permeability responses.


2006 ◽  
Vol 281 (43) ◽  
pp. 32831-32840 ◽  
Author(s):  
Beate Fiedler ◽  
Robert Feil ◽  
Franz Hofmann ◽  
Christian Willenbockel ◽  
Helmut Drexler ◽  
...  

Cardiac myocyte apoptosis during ischemia and reperfusion (I/R) is tightly controlled by a complex network of stress-responsive signaling pathways. One pro-apoptotic pathway involves the interaction of the scaffold protein TAB1 with p38 mitogen-activated protein kinase (p38 MAPK) leading to the autophosphorylation and activation of p38 MAPK. Conversely, NO and its second messenger cGMP protect cardiac myocytes from apoptosis during I/R. We provide evidence that the cGMP target cGMP-dependent protein kinase type I (PKG I) interferes with TAB1-p38 MAPK signaling to protect cardiac myocytes from I/R injury. In isolated neonatal cardiac myocytes, activation of PKG I inhibited the interaction of TAB1 with p38 MAPK, p38 MAPK phosphorylation, and apoptosis induced by simulated I/R. During I/R in vivo, mice with a cardiac myocyte-restricted deletion of PKG I displayed a more pronounced interaction of TAB1 with p38 MAPK and a stronger phosphorylation of p38 MAPK in the myocardial area at risk during reperfusion and more apoptotic cardiac myocytes in the infarct border zone as compared with wild-type littermates. Notably, adenoviral expression of a constitutively active PKG I mutant truncated at the N terminus(PKGI-ΔN1-92) did not inhibit p38 MAPK phosphorylation and apoptosis induced by simulated I/R in vitro, indicating that the N terminus of PKG I is required. As shown by co-immunoprecipitation experiments in HEK293 cells, cGMP-activated PKG I, but not constitutively active PKG I-ΔN1-92 or PKG I mutants carrying point mutations in the N-terminal leucine-isoleucine zipper, interacted with p38 MAPK, and prevented the binding of TAB1 to p38 MAPK. Together, our data identify a novel interaction between the cGMP target PKG I and the TAB1-p38 MAPK signaling pathway that serves as a defense mechanism against myocardial I/R injury.


2002 ◽  
Vol 282 (3) ◽  
pp. C625-C634 ◽  
Author(s):  
Melina R Kibbe ◽  
Jianrong Li ◽  
Suhua Nie ◽  
Byung Min Choi ◽  
Imre Kovesdi ◽  
...  

The functional role of p53 in nitric oxide (NO)-mediated vascular smooth muscle cell (VSMC) apoptosis remains unknown. In this study, VSMC from p53−/− and p53+/+ murine aortas were exposed to exogenous or endogenous sources of NO. Unexpectedly, p53−/− VSMC were much more sensitive to the proapoptotic effects of NO than were p53+/+ VSMC. Furthermore, this paradox appeared to be specific to NO, because other proapoptotic agents did not demonstrate this differential effect on p53−/− cells. NO-induced apoptosis in p53−/− VSMC occurred independently of cGMP generation. However, mitogen-activated protein kinase (MAPK) pathways appeared to play a significant role. Treatment of the p53−/− VSMC with S-nitroso- N-acetylpenicillamine resulted in a marked activation of p38 MAPK and, to a lesser extent, of c-Jun NH2-terminal kinase, mitogen-activated protein kinase kinase (MEK) 1/2, and p42/44 (extracellular signal-regulated kinase, ERK). Furthermore, basal activity of the MEK-p42/44 (ERK) pathway was increased in the p53+/+ VSMC. Inhibition of p38 MAPK with SB-203580 or of MEK1/2 with PD-98059 blocked NO-induced apoptosis. Therefore, p53 may protect VSMC against NO-mediated apoptosis, in part, through differential regulation of MAPK pathways.


2003 ◽  
Vol 23 (18) ◽  
pp. 6442-6454 ◽  
Author(s):  
Chia-Cheng Wu ◽  
Shu-Ching Hsu ◽  
Hsiu-ming Shih ◽  
Ming-Zong Lai

ABSTRACT p38 mitogen activated protein kinase (MAPK) is essential for T-cell activation. Here we demonstrated that nuclear factor of activated T cells (NFAT) is a direct target of p38 MAPK. Inhibition of p38 MAPK led to selective inactivation of NFAT in T cells. We further linked a strict requirement of p38 MAPK to activation of NFATc. A stimulatory effect of p38 MAPK on at least four other stages of NFATc activation was found. First, the p38 MAPK cascade activated the NFATc promoter and induced the transcription of NFATc mRNA. Second, p38 MAPK mildly increased the mRNA stability of NFATc. Third, p38 MAPK enhanced the translation of NFATc mRNA. Fourth, p38 MAPK promoted the interaction of NFATc with the coactivator CREB-binding protein. In contrast, p38 MAPK moderately enhanced the expulsion of NFATc from the nucleus in T cells. Therefore, p38 MAPK has opposite effects on different stages of NFATc activation. All together, the overall effect of p38 MAPK on NFATc in T cells is clear activation.


Sign in / Sign up

Export Citation Format

Share Document