scholarly journals Toxoplasma Cathepsin Protease B and Aspartyl Protease 1 Are Dispensable for Endolysosomal Protein Digestion

mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Christian McDonald ◽  
David Smith ◽  
Manlio Di Cristina ◽  
Geetha Kannan ◽  
Zhicheng Dou ◽  
...  

ABSTRACT The lysosome-like vacuolar compartment (VAC) is a major site of proteolysis in the intracellular parasite Toxoplasma gondii. Previous studies have shown that genetic ablation of a VAC-residing cysteine protease, cathepsin protease L (CPL), resulted in the accumulation of undigested protein in the VAC and loss of parasite viability during the chronic stage of infection. However, since the maturation of another VAC localizing protease, cathepsin protease B (CPB), is dependent on CPL, it remained unknown whether these defects result directly from ablation of CPL or indirectly from a lack of CPB maturation. Likewise, although a previously described cathepsin D-like aspartyl protease 1 (ASP1) could also play a role in proteolysis, its definitive residence and function in the Toxoplasma endolysosomal system were not well defined. Here, we demonstrate that CPB is not necessary for protein turnover in the VAC and that CPB-deficient parasites have normal growth and viability in both the acute and chronic stages of infection. We also show that ASP1 depends on CPL for correct maturation, and it resides in the T. gondii VAC, where, similar to CPB, it plays a dispensable role in protein digestion. Taken together with previous work, our findings suggest that CPL is the dominant protease in a hierarchy of proteolytic enzymes within the VAC. This unusual lack of redundancy for CPL in T. gondii makes it a single exploitable target for disrupting chronic toxoplasmosis. IMPORTANCE Roughly one-third of the human population is chronically infected with the intracellular single-celled parasite Toxoplasma gondii, but little is known about how this organism persists inside people. Previous research suggested that a parasite proteolytic enzyme, termed cathepsin protease L, is important for Toxoplasma persistence; however, it remained possible that other associated proteolytic enzymes could also be involved in the long-term survival of the parasite during infection. Here, we show that two proteolytic enzymes associated with cathepsin protease L play dispensable roles and are dependent on cathepsin L to reach maturity, which differs from the corresponding enzymes in humans. These findings establish a divergent hierarchy of proteases and help focus attention principally on cathepsin protease L as a potential target for interrupting Toxoplasma chronic infection.

2019 ◽  
Author(s):  
Christian McDonald ◽  
David Smith ◽  
Manlio Di Cristina ◽  
Geetha Kannan ◽  
Zhicheng Dou ◽  
...  

ABSTRACTThe lysosome-like vacuolar compartment (VAC) is a major site of proteolysis in the intracellular parasite Toxoplasma gondii. Previous studies have shown that genetic ablation of a VAC-residing cysteine protease, cathepsin protease L (CPL), resulted in accumulation of undigested protein in the VAC and loss of parasite viability during the chronic stage of infection. However, since the maturation of another VAC localizing protease, cathepsin protease B (CPB), is dependent on CPL, it remained unknown whether these defects result directly from ablation of CPL or indirectly from a lack of CPB maturation. Likewise, although a previously described cathepsin D-like aspartyl protease 1 (ASP1) could also play a role in proteolysis, its definitive residence and function in the Toxoplasma endolysosomal system was not well defined. Here we demonstrate that CPB is not necessary for protein turnover in the VAC and that CPB deficient parasites have normal growth and viability in both the acute and chronic stages of infection. We also show that ASP1 depends on CPL for correct maturation and it resides in the T. gondii VAC where, similar to CPB, it plays a dispensable role in protein digestion. Taken together with previous work, our findings suggest that CPL is the dominant protease in a hierarchy of proteolytic enzymes within the VAC. This unusual lack of redundancy for CPL in T. gondii makes it a single exploitable target for disrupting chronic toxoplasmosis.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Zhicheng Dou ◽  
Olivia L. McGovern ◽  
Manlio Di Cristina ◽  
Vern B. Carruthers

ABSTRACT The protozoan parasite Toxoplasma gondii resides within a nonfusogenic vacuole during intracellular replication. Although the limiting membrane of this vacuole provides a protective barrier to acidification and degradation by lysosomal hydrolases, it also physically segregates the parasite from the host cytosol. Accordingly, it has been suggested that T. gondii acquires material from the host via membrane channels or transporters. The ability of the parasite to internalize macromolecules via endocytosis during intracellular replication has not been tested. Here, we show that Toxoplasma ingests host cytosolic proteins and digests them using cathepsin L and other proteases within its endolysosomal system. Ingestion was reduced in mutant parasites lacking an intravacuolar network of tubular membranes, implicating this apparatus as a possible conduit for trafficking to the parasite. Genetic ablation of proteins involved in the pathway is associated with diminished parasite replication and virulence attenuation. We show that both virulent type I and avirulent type II strain parasites ingest and digest host-derived protein, indicating that the pathway is not restricted to highly virulent strains. The findings provide the first definitive evidence that T. gondii internalizes proteins from the host during intracellular residence and suggest that protein digestion within the endolysosomal system of the parasite contributes to toxoplasmosis. IMPORTANCE Toxoplasma gondii causes significant disease in individuals with weak immune systems. Treatment options for this infection have drawbacks, creating a need to understand how this parasite survives within the cells it infects as a prelude to interrupting its survival strategies. This study reveals that T. gondii internalizes proteins from the cytoplasm of the cells it infects and degrades such proteins within a digestive compartment within the parasite. Disruption of proteins involved in the pathway reduced parasite replication and lessened disease severity. The identification of a novel parasite ingestion pathway opens opportunities to interfere with this process and improve the outcome of infection.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Michael J. Coffey ◽  
Laura F. Dagley ◽  
Simona Seizova ◽  
Eugene A. Kapp ◽  
Giuseppe Infusini ◽  
...  

ABSTRACT Toxoplasma gondii infects approximately 30% of the world’s population, causing disease primarily during pregnancy and in individuals with weakened immune systems. Toxoplasma secretes and exports effector proteins that modulate the host during infection, and several of these proteins are processed by the Golgi-associated aspartyl protease 5 (ASP5). Here, we identify ASP5 substrates by selectively enriching N-terminally derived peptides from wild-type and Δasp5 parasites. We reveal more than 2,000 unique Toxoplasma N-terminal peptides, mapping to both natural N termini and protease cleavage sites. Several of these peptides mapped directly downstream of the characterized ASP5 cleavage site, arginine-arginine-leucine (RRL). We validate candidates as true ASP5 substrates, revealing they are not processed in parasites lacking ASP5 or in wild-type parasites following mutation of the motif from RRL to ARL. All identified ASP5 substrates are dense granule proteins, and interestingly, none appear to be exported, thus differing from the analogous system in related Plasmodium spp. Instead we show that the majority of substrates reside within the parasitophorous vacuole (PV), and its membrane (the PVM), including two kinases and one phosphatase. We show that genetic deletion of WNG2 leads to attenuation in a mouse model, suggesting that this putative kinase is a new virulence factor in Toxoplasma. Collectively, these data constitute the first in-depth analyses of ASP5 substrates and shed new light on the role of ASP5 as a maturase of dense granule proteins during the Toxoplasma lytic cycle. IMPORTANCE Toxoplasma gondii is one of the most successful human parasites. Central to its success is the arsenal of virulence proteins introduced into the infected host cell. Several of these virulence proteins require direct maturation by the aspartyl protease ASP5, and all require ASP5 for translocation into the host cell, yet the true number of ASP5 substrates and complete repertoire of effectors is currently unknown. Here we selectively enrich N-terminally derived peptides using Terminal Amine Isotopic Labeling of Substrates (TAILS) and use quantitative proteomics to reveal novel ASP5 substrates. We identify, using two different enrichment techniques, new ASP5 substrates and their specific cleavage sites. ASP5 substrates include two kinases and one phosphatase that reside at the host-parasite interface, which are important for infection.


1998 ◽  
Vol 89 (1) ◽  
pp. 60-68 ◽  
Author(s):  
Richard B. Schwartz ◽  
B. Leonard Holman ◽  
Joseph F. Polak ◽  
Basem M. Garada ◽  
Marc S. Schwartz ◽  
...  

Object. The study was conducted to determine the association between dual-isotope single-photon emission computerized tomography (SPECT) scanning and histopathological findings of tumor recurrence and survival in patients treated with high-dose radiotherapy for glioblastoma multiforme. Methods. Studies in which SPECT with 201Tl and 99mTc-hexamethypropyleneamine oxime (HMPAO) were used were performed 1 day before reoperation in 47 patients with glioblastoma multiforme who had previously been treated by surgery and high-dose radiotherapy. Maximum uptake of 201Tl in the lesion was expressed as a ratio to that in the contralateral scalp, and uptake of 99mTc-HMPAO was expressed as a ratio to that in the cerebellar cortex. Patients were stratified into groups based on the maximum radioisotope uptake values in their tumor beds. The significance of differences in patient gender, histological characteristics of tissue at reoperation, and SPECT uptake group with respect to 1-year survival was elucidated by using the chi-square statistic. Comparisons of patient ages and time to tumor recurrence as functions of 1-year survival were made using the t-test. Survival data at 1 year were presented according to the Kaplan—Meier method, and the significance of potential differences was evaluated using the log-rank method. The effects of different variables (tumor type, time to recurrence, and SPECT grouping) on long-term survival were evaluated using Cox proportional models that controlled for age and gender. All patients in Group I (201Tl ratio < 2 and 99mTc-HMPAO ratio < 0.5) showed radiation changes in their biopsy specimens: they had an 83.3% 1-year survival rate. Group II patients (201T1 ratio < 2 and 99mTc-HMPAO ratio of ≥ 0.5 or 201Tl ratio between 2 and 3.5 regardless of 99mTc-HMPAO ratio) had predominantly infiltrating tumor (66.6%); they had a 29.2% 1-year survival rate. Almost all of the patients in Group III (201Tl ratio > 3.5 and 99mTc-HMPAO ratio ≥ 0.5) had solid tumor (88.2%) and they had a 6.7% 1-year survival rate. Histological data were associated with 1-year survival (p < 0.01); however, SPECT grouping was more closely associated with 1-year survival (p < 0.001) and was the only variable significantly associated with long-term survival (p < 0.005). Conclusions. Dual-isotope SPECT data correlate with histopathological findings made at reoperation and with survival in patients with malignant gliomas after surgical and high-dose radiation therapy.


2005 ◽  
Vol 102 (Special_Supplement) ◽  
pp. 287-288 ◽  
Author(s):  
Thomas Mindermann

Object. The authors evaluated prognostic factors for tumor recurrence and patient survival following gamma knife surgery (GKS) for brain metastasis. Methods. A retrospective review of 101 patient charts was undertaken for those patients treated with GKS for brain metastases from 1994 to 2001. Recurrence rates of brain metastasis following GKS depended on the duration of patient survival. Long-term survival was associated with a higher risk of tumor recurrence and shorter-term survival was associated with a lower risk. The duration of survival following GKS for brain metastases seems to be characteristic of the primary disease rather than the cerebral disease. Conclusions. Recurrence rates of brain metastasis following GKS are related to duration of survival, which is in turn mostly dependent on the nature and course of the primary tumor.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Xiaoyu Hu ◽  
William J. O’Shaughnessy ◽  
Tsebaot G. Beraki ◽  
Michael L. Reese

ABSTRACT Mitogen-activated protein kinases (MAPKs) are a conserved family of protein kinases that regulate signal transduction, proliferation, and development throughout eukaryotes. The apicomplexan parasite Toxoplasma gondii expresses three MAPKs. Two of these, extracellular signal-regulated kinase 7 (ERK7) and MAPKL1, have been implicated in the regulation of conoid biogenesis and centrosome duplication, respectively. The third kinase, MAPK2, is specific to and conserved throughout the Alveolata, although its function is unknown. We used the auxin-inducible degron system to determine phenotypes associated with MAPK2 loss of function in Toxoplasma. We observed that parasites lacking MAPK2 failed to duplicate their centrosomes and therefore did not initiate daughter cell budding, which ultimately led to parasite death. MAPK2-deficient parasites initiated but did not complete DNA replication and arrested prior to mitosis. Surprisingly, the parasites continued to grow and replicate their Golgi apparatus, mitochondria, and apicoplasts. We found that the failure in centrosome duplication is distinct from the phenotype caused by the depletion of MAPKL1. As we did not observe MAPK2 localization at the centrosome at any point in the cell cycle, our data suggest that MAPK2 regulates a process at a distal site that is required for the completion of centrosome duplication and the initiation of parasite mitosis. IMPORTANCE Toxoplasma gondii is a ubiquitous intracellular protozoan parasite that can cause severe and fatal disease in immunocompromised patients and the developing fetus. Rapid parasite replication is critical for establishing a productive infection. Here, we demonstrate that a Toxoplasma protein kinase called MAPK2 is conserved throughout the Alveolata and essential for parasite replication. We found that parasites lacking MAPK2 protein were defective in the initiation of daughter cell budding and were rendered inviable. Specifically, T. gondii MAPK2 (TgMAPK2) appears to be required for centrosome replication at the basal end of the nucleus, and its loss causes arrest early in parasite division. MAPK2 is unique to the Alveolata and not found in metazoa and likely is a critical component of an essential parasite-specific signaling network.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Maude F. Lévêque ◽  
Laurence Berry ◽  
Michael J. Cipriano ◽  
Hoa-Mai Nguyen ◽  
Boris Striepen ◽  
...  

ABSTRACT Autophagy is a catabolic process widely conserved among eukaryotes that permits the rapid degradation of unwanted proteins and organelles through the lysosomal pathway. This mechanism involves the formation of a double-membrane structure called the autophagosome that sequesters cellular components to be degraded. To orchestrate this process, yeasts and animals rely on a conserved set of autophagy-related proteins (ATGs). Key among these factors is ATG8, a cytoplasmic protein that is recruited to nascent autophagosomal membranes upon the induction of autophagy. Toxoplasma gondii is a potentially harmful human pathogen in which only a subset of ATGs appears to be present. Although this eukaryotic parasite seems able to generate autophagosomes upon stresses such as nutrient starvation, the full functionality and biological relevance of a canonical autophagy pathway are as yet unclear. Intriguingly, in T. gondii, ATG8 localizes to the apicoplast under normal intracellular growth conditions. The apicoplast is a nonphotosynthetic plastid enclosed by four membranes resulting from a secondary endosymbiosis. Using superresolution microscopy and biochemical techniques, we show that TgATG8 localizes to the outermost membrane of this organelle. We investigated the unusual function of TgATG8 at the apicoplast by generating a conditional knockdown mutant. Depletion of TgATG8 led to rapid loss of the organelle and subsequent intracellular replication defects, indicating that the protein is essential for maintaining apicoplast homeostasis and thus for survival of the tachyzoite stage. More precisely, loss of TgATG8 led to abnormal segregation of the apicoplast into the progeny because of a loss of physical interactions of the organelle with the centrosomes. IMPORTANCE By definition, autophagy is a catabolic process that leads to the digestion and recycling of eukaryotic cellular components. The molecular machinery of autophagy was identified mainly in model organisms such as yeasts but remains poorly characterized in phylogenetically distant apicomplexan parasites. We have uncovered an unusual function for autophagy-related protein ATG8 in Toxoplasma gondii: TgATG8 is crucial for normal replication of the parasite inside its host cell. Seemingly unrelated to the catabolic autophagy process, TgATG8 associates with the outer membrane of the nonphotosynthetic plastid harbored by the parasite called the apicoplast, and there it plays an important role in the centrosome-driven inheritance of the organelle during cell division. This not only reveals an unexpected function for an autophagy-related protein but also sheds new light on the division process of an organelle that is vital to a group of important human and animal pathogens.


2018 ◽  
Vol 87 (2) ◽  
Author(s):  
Isra Alsaady ◽  
Ellen Tedford ◽  
Mohammad Alsaad ◽  
Greg Bristow ◽  
Shivali Kohli ◽  
...  

ABSTRACT Toxoplasma gondii is associated with physiological effects in the host. Dysregulation of catecholamines in the central nervous system has previously been observed in chronically infected animals. In the study described here, the noradrenergic system was found to be suppressed with decreased levels of norepinephrine (NE) in brains of infected animals and in infected human and rat neural cells in vitro. The mechanism responsible for the NE suppression was found to be downregulation of dopamine β-hydroxylase (DBH) gene expression, encoding the enzyme that synthesizes norepinephrine from dopamine, with downregulation observed in vitro and in infected brain tissue, particularly in the dorsal locus coeruleus/pons region. The downregulation was sex specific, with males expressing reduced DBH mRNA levels whereas females were unchanged. Rather, DBH expression correlated with estrogen receptor in the female rat brains for this estrogen-regulated gene. DBH silencing was not a general response of neurons to infection, as human cytomegalovirus did not downregulate DBH expression. The noradrenergic-linked behaviors of sociability and arousal were altered in chronically infected animals, with a high correlation between DBH expression and infection intensity. A decrease in DBH expression in noradrenergic neurons can elevate dopamine levels, which provides a possible explanation for mixed observations of changes in this neurotransmitter with infection. Decreased NE is consistent with the loss of coordination and motor impairments associated with toxoplasmosis. Further, the altered norepinephrine synthesis observed here may, in part, explain behavioral effects of infection and associations with mental illness.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Yong Fu ◽  
Xia Cui ◽  
Sai Fan ◽  
Jing Liu ◽  
Xiao Zhang ◽  
...  

ABSTRACT Acyl coenzyme A (CoA)-binding protein (ACBP) can bind acyl-CoAs with high specificity and affinity, thus playing multiple roles in cellular functions. Mitochondria of the apicomplexan parasite Toxoplasma gondii have emerged as key organelles for lipid metabolism and signaling transduction. However, the rationale for how this parasite utilizes acyl-CoA-binding protein to regulate mitochondrial lipid metabolism remains unclear. Here, we show that an ankyrin repeat-containing protein, TgACBP2, is localized to mitochondria and displays active acyl-CoA-binding activities. Dephosphorylation of TgACBP2 is associated with relocation from the plasma membrane to the mitochondria under conditions of regulation of environmental [K+]. Under high [K+] conditions, loss of ACBP2 induced mitochondrial dysfunction and apoptosis-like cell death. Disruption of ACBP2 caused growth and virulence defects in the type II strain but not in type I parasites. Interestingly, mitochondrial association factor-1 (MAF1)-mediated host mitochondrial association (HMA) restored the growth ability of ACBP2-deficient type II parasites. Lipidomics analysis indicated that ACBP2 plays key roles in the cardiolipin metabolism of type II parasites and that MAF1 expression complemented the lipid metabolism defects of ACBP2-deficient type II parasites. In addition, disruption of ACBP2 caused attenuated virulence of Prugniuad (Pru) parasites for mice. Taking the results collectively, these data indicate that ACBP2 is critical for the growth and virulence of type II parasites and for the growth of type I parasites under high [K+] conditions. IMPORTANCE Toxoplasma gondii is one of the most successful human parasites, infecting nearly one-third of the total world population. T. gondii tachyzoites residing within parasitophorous vacuoles (PVs) can acquire fatty acids both via salvage from host cells and via de novo synthesis pathways for membrane biogenesis. However, although fatty acid fluxes are known to exist in this parasite, how fatty acids flow through Toxoplasma lipid metabolic organelles, especially mitochondria, remains unknown. In this study, we demonstrated that Toxoplasma expresses an active ankyrin repeat containing protein TgACBP2 to coordinate cardiolipin metabolism. Specifically, HMA acquisition resulting from heterologous functional expression of MAF1 rescued growth and lipid metabolism defects in ACBP2-deficient type II parasites, manifesting the complementary role of host mitochondria in parasite cardiolipin metabolism. This work highlights the importance of TgACBP2 in parasite cardiolipin metabolism and provides evidence for metabolic association of host mitochondria with T. gondii.


2017 ◽  
Vol 45 (11) ◽  
pp. 1138-1158 ◽  
Author(s):  
Suhaily Mohd-Ramly ◽  
Nor Asiah Omar

Purpose The global retail landscape has changed drastically. The rising role of Asia as one of the fastest growing international retail penetration and expansion will continue to make the region to be the driving force in world economic growth. However, the ambitious expansion plans are making the retail sector to be more challenging. Emphasizing on the customer experience and enhancing the value proposition to customers are undeniably vital factors for the long-term survival of any retail business. Therefore, the purpose of this paper is to examine the influence of store attributes on customer experience and customer engagement in the context of department store in Malaysia. Subsequently, the influence of customer experience on customer engagement is also analyzed. Design/methodology/approach Using drop and collect survey, 484 valid responses of department store cardholders of age 18 years and above in the area Klang Valley, Malaysia, were collected. PLS structural equation modeling was used to test the hypotheses of this study. Findings Results revealed that customer experience is influenced by merchandise, store atmosphere, and loyalty program, while customer engagement is influenced by merchandise, communication, interpersonal communication, and loyalty. In contrast, post-transaction services were found to have non-significant impact on both customer experience and customer engagement. Analysis also revealed a strong relationship between customer experience and customer engagement. Research limitations/implications This study is carried out on customers of department store in Malaysia. However, the researchers urge other researchers to replicate the study from different countries and category of department stores. Originality/value Retail researchers recognize little knowledge on the contribution of store attributes to customer experience and customer engagement. This paper represents original research that encourages foreign retailers to employ service-dominant logic as a new marketing thought in designing strong customer engagement and experience strategies to capture the Malaysia market.


Sign in / Sign up

Export Citation Format

Share Document