Physical and chemical strain-hardening during faulting in poorly lithified sandstone: The role of kinematic stress field and selective cementation

2019 ◽  
Vol 132 (5-6) ◽  
pp. 1183-1200 ◽  
Author(s):  
Mattia Pizzati ◽  
Fabrizio Balsamo ◽  
Fabrizio Storti ◽  
Paola Iacumin

Abstract In this work, we report the results of a multidisciplinary study describing the structural architecture and diagenetic evolution of the Rocca di Neto extensional fault zone developed in poorly lithified sandstones of the Crotone Basin, Southern Italy. The studied fault zone has an estimated displacement of ∼90 m and consists of: (1) a low-deformation zone with subsidiary faults and widely spaced deformation bands; (2) an ∼10-m-wide damage zone, characterized by a dense network of conjugate deformation bands; (3) an ∼3-m-wide mixed zone produced by tectonic mixing of sediments with different grain size; (4) an ∼1-m-wide fault core with bedding transposed into foliation and ultra-comminute black gouge layers. Microstructural investigations indicate that particulate flow was the dominant early-stage deformation mechanism, while cataclasis became predominant after porosity loss, shallow burial, and selective calcite cementation. The combination of tectonic compaction and preferential cementation led to a strain-hardening behavior inducing the formation of “inclined conjugate deformation band sets” inside the damage zone, caused by the kinematic stress field associated with fault activity. Conversely, conjugate deformation band sets with a vertical bisector formed outside the damage zone in response to the regional extensional stress field. Stable isotope analysis helped in constraining the diagenetic environment of deformation, which is characterized by mixed marine-meteoric signature for cements hosted inside the damage zone, while it progressively becomes more meteoric moving outside the fault zone. This evidence supports the outward propagation of fault-related deformation structures in the footwall damage zone.

2017 ◽  
Vol 5 (4) ◽  
pp. SP41-SP56 ◽  
Author(s):  
Dongfang Qu ◽  
Jan Tveranger ◽  
Muhammad Fachri

Access to 3D descriptions of fault zone architectures and recent development of modeling techniques allowing explicit rendering of these features in reservoir models, provide a new tool for detailed implementation of fault zone properties. Our aim is to assess how explicit rendering of fault zone architecture and properties affects performance of fluid flow simulation models. The test models use a fault with a maximum 100 m displacement and a fault damage zone with petrophysical heterogeneity caused by the presence of deformation bands. The distribution pattern of deformation bands in fault damage zones is well-documented, which allows generation of realistic models. A multiscale modeling workflow is applied to incorporate these features into reservoir models. Model input parameters were modulated to provide a range of property distributions, and the interplay between the modeling parameters and reservoir performance was analyzed. The influence of deformation-band damage zone on reservoir performance in the presence of different fault core transmissibility-multipliers was investigated. Two configurations are considered: one in which the fault terminates inside the model domain, representing a case in which the fluid can flow around the fault, and one in which the fault dissects the entire model domain, representing a case in which the fluid is forced to cross the fault. We observed that the impact of deformation-band fault damage zone on reservoir performance changes when the fault core transmissibility multiplier is changed. Reservoir performance is insensitive to changing damage zone heterogeneity in a configuration in which flow can move around the fault. Where flow cannot bypass the fault, the influence of fault damage zone heterogeneity on reservoir performance is significant even when the fault core transmissibility multiplier is low.


Geosciences ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 257
Author(s):  
Romain Robert ◽  
Pauline Souloumiac ◽  
Philippe Robion ◽  
Christian David

Knowledge of the paleo-stress distribution is crucial to understand the fracture set up and orientations during the tectonic evolution of a basin, and thus the corresponding fluid flow patterns in a reservoir. This study aims to predict the main stress orientations and evolution during the growth of a fold by using the limit analysis method. Fourteen different steps have been integrated as 2D cross sections from an early stage to an evolved stage of a schematic and balanced propagation fold. The stress evolution was followed during the time and burial of syn tectonic layers localized in front of the thrust. Numerical simulations were used to predict the occurrence and orientation of deformation bands, i.e., compaction and shear bands, by following the kinematic of a fault-propagation fold. The case study of the Sant-Corneli-Boixols anticline was selected, located in the South Central Pyrenees in the Tremp basin, to constrain the dimension of the starting models (or prototypes) used in our numerical simulations. The predictions of the numerical simulations were compared to field observations of an early occurrence of both pure compaction- and shear-enhanced compaction bands in the syn-tectonic Aren formation located in front of the fold, which are subjected to early layer parallel shortening during the burial history. Stress magnitude and stress ratio variations define the type of deformation band produced. Our results show that the band occurrence depends on the yield envelope of the host material and that a small yield envelope is required for these shallow depths, which can only be explained by the heterogeneity of the host rock facies. In our case, the heterogeneity can be explained by a significant contribution of carbonate bioclasts in the calcarenite rock, which change the mechanical behavior of the whole rock.


2017 ◽  
Vol 5 (4) ◽  
pp. SP9-SP26 ◽  
Author(s):  
Charlotte Botter ◽  
Nestor Cardozo ◽  
Dongfang Qu ◽  
Jan Tveranger ◽  
Dmitriy Kolyukhin

Faults play a key role in reservoirs by enhancing or restricting fluid flow. A fault zone can be divided into a fault core that accommodates most of the displacement and a surrounding damage zone. Interpretation of seismic data is a key method for studying subsurface features, but the internal structure and properties of fault zones are often at the limit of seismic resolution. We have investigated the seismic response of a vertical fault zone model in sandstone, populated with fault facies based on deformation band distributions. Deformation bands reduce the porosity of the sandstone, and they condition its elastic properties. We generate synthetic seismic cubes of the fault facies model for several wave frequencies and under realistic conditions of reservoir burial and seismic acquisition. Seismic image quality and fault zone definition are highly dependent on wave frequency. At a low wave frequency (e.g., 10 Hz), the fault zone is broader and no information about its fault facies distribution can be extracted. At higher wave frequencies (e.g., 30 and 60 Hz), seismic attributes, such as tensor and envelope, can be used to characterize the fault volume and its internal structure. Based on these attributes, we can subdivide the fault zone into several seismic facies from the core to the damage zone. Statistical analyses indicate a correlation between the seismic attributes and the fault internal structure, although seismic facies, due to their coarser resolution, cannot be matched to individual fault facies. The seismic facies can be used as input for reservoir models as spatial conditioning parameters for fault facies distributions inside the fault zone. However, relying only on the information provided by seismic analyses might not be enough to create high-resolution fault reservoir models.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
László Molnár ◽  
Balázs Vásárhelyi ◽  
Tivadar M. Tóth ◽  
Félix Schubert

AbstractThe integrated evaluation of borecores from the Mezősas-Furta fractured metamorphic hydrocarbon reservoir suggests significantly distinct microstructural and rock mechanical features within the analysed fault rock samples. The statistical evaluation of the clast geometries revealed the dominantly cataclastic nature of the samples. Damage zone of the fault can be characterised by an extremely brittle nature and low uniaxial compressive strength, coupled with a predominately coarse fault breccia composition. In contrast, the microstructural manner of the increasing deformation coupled with higher uniaxial compressive strength, strain-hardening nature and low brittleness indicate a transitional interval between the weakly fragmented damage zone and strongly grinded fault core. Moreover, these attributes suggest this unit is mechanically the strongest part of the fault zone. Gougerich cataclasites mark the core zone of the fault, with their widespread plastic nature and locally pseudo-ductile microstructure. Strain localization tends to be strongly linked with the existence of fault gouge ribbons. The fault zone with ∼15 m total thickness can be defined as a significant migration pathway inside the fractured crystalline reservoir. Moreover, as a consequence of the distributed nature of the fault core, it may possibly have a key role in compartmentalisation of the local hydraulic system.


1969 ◽  
Vol 6 (5) ◽  
pp. 1095-1104 ◽  
Author(s):  
Gerhard H. Eisbacher

The east-trending Cobequid Fault separates pre-Carboniferous rocks of the Cobequid Mountains to the north from Carboniferous clastic rocks along the southern flank of the mountains. A detailed study of the fault zone revealed tie predominance of right-lateral displacements. The orientation of the stress field that existed during deformation along the fault trace was determined by the study of systematic fractures in pebbles within Carboniferous conglomerate. Maximum compressive stress was aligned in a NW–SE direction, being compatible with the orientation of the displacement vectors in the fault zone. Transcurrent movement along the Cobequid Fault occurred in late Pennsylvanian time and involved both Carboniferous and pre-Carboniferous rocks; total displacement is unknown.


2021 ◽  
Author(s):  
Kyriaki Drymoni ◽  
John Browning ◽  
Agust Gudmundsson

<p>Dykes and inclined sheets are known occasionally to exploit faults as parts of their paths, but the conditions that allow this to happen are still not fully understood. Here we report field observations from a well-exposed dyke swarm of the Santorini volcano, Greece, that show dykes and inclined sheets deflected into faults and the results of analytical and numerical models to explain the conditions for deflection. The deflected dykes and sheets belong to a local swarm of 91 dyke/sheet segments that was emplaced in a highly heterogeneous and anisotropic host rock and partially cut by some regional faults and a series of historic caldera collapses, the caldera walls providing, excellent exposures of the structures. The numerical models focus on a normal-fault dipping 65° with a damage zone composed of parallel layers or zones of progressively more compliant rocks with increasing distance from the fault rupture plane. We model sheet-intrusions dipping from 0˚ to 90˚ and with overpressures of alternatively 1 MPa and 5 MPa, approaching the fault. We further tested the effects of changing (1) the sheet thickness, (2) the fault-zone thickness, (3) the fault-zone dip-dimension (height), and (4) the loading by, alternatively, regional extension and compression. We find that the stiffness of the fault core, where a compliant core characterises recently active fault zones, has pronounced effects on the orientation and magnitudes of the local stresses and, thereby, on the likelihood of dyke/sheet deflection into the fault zone. Similarly, the analytical models, focusing on the fault-zone tensile strength and energy conditions for dyke/sheet deflection, indicate that dykes/sheets are most likely to be deflected into and use steeply dipping recently active (zero tensile-strength) normal faults as parts of their paths.</p>


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Eka Febriyanti ◽  
Dedi Priadi ◽  
Rini Riastuti

Cu-Zn 70/30 alloy has properties that is relatively soft, ductile, and easy to perform by cold working. However, cold working has the disadvantage that require equipment which has higher loading capacity to generate strength and higher density thus increasing of machining cost. In addition, strain hardening phenomenon due to cold working process resulted in decreasing of ductility material. Therefore, it is necessary alternative fabrication processes to optimize the mechanical properties of Cu-Zn alloy 70/30 that with the TMCP method. TMCP is metal forming material by providing large and controlled plastic strain to the material. TMCP using the deformation percentage variation that 32.25%, 35.48%, and 38.7% from hot rolled research at 500°C temperature in double pass reversible which performed on Cu-Zn 70/30 plate. By tensile testing using universal testing machine can be seen that the Cu-Zn 70/30 alloy on 32.25% degree of deformation, both of UTS and YS respectively are 505 MPa and 460 MPa. Whereas from examination of thickness and density deformation bands by FE-SEM shows denser and thicker deformation band proportional with increasing of deformation degree.Moreover, the values of tensile strength at the edge of the area and the center is directly proportional to the density and thickness of the deformation band.AbstrakPaduan Cu-Zn 70/30 memiliki sifat yang relatif lunak, ulet, dan mudah dilakukan pengerjaan dingin. Namun, pengerjaan dingin memiliki kekurangan yaitu membutuhkan peralatan yang memiliki kapasitas pembebanan tinggi untuk menghasilkan kekuatan dan kepadatan tinggi sehingga meningkatkan biaya permesinan. Selain itu, fenomena pengerasan regang akibat proses pengerjaan dingin menghasilkan penurunan keuletan material. Oleh karena itu, diperlukan alternatif proses fabrikasi untuk mengoptimalkan sifat mekanik paduan Cu-Zn 70/30 salah satunya dengan metode TMCP. TMCP merupakan suatu proses perubahan bentuk suatu material dengan cara memberikan regangan plastis yang besar dan terkontrol terhadap material. TMCP dengan menggunakan variasi persentase deformasi sebanyak 32,25%, 35,48%, dan 38,70% dari penelitian canai hangat di suhu 500oC secara double pass reversible dilakukan pada pelat paduan Cu-Zn 70/30. Dengan melakukan pengujian tarik menggunakan mesin uji tarik universal testing machine dapat dilihat bahwa pada material paduan Cu-Zn 70/30 pada derajat deformasi 32,25% menghasilkan nilai UTS dan YS masing-masing sebesar 505 MPa dan 460 MPa. Sedangkan dari hasil pengamatan ketebalan dan kerapatan deformation band menggunakan FE-SEM menunjukkan deformation band yang lebih rapat dan lebih tebal sebanding dengan semakin meningkatnya derajat deformasi. Selain itu, nilai kekuatan tarik pada daerah tepi dan tengah berbanding lurus dengan kerapatan dan ketebalan deformation band.Keywords: 70/30 Cu-Zn alloy, warm rolled, deformation degree, deformation bands


2021 ◽  
Author(s):  
Irène Aubert ◽  
Juliette Lamarche ◽  
Philippe Leonide

<p>Understanding the impact of fault zones on reservoir trap properties is a major challenge for a variety of geological ressources applications. Fault zones in cohesive rocks are complex structures, composed of 3 components: rock matrix, damage zone fractures and fault core rock. Despite the diversity of existing methods to estimate fault zone permeability/drain properties, up to date none of them integrate simultaneously the 3 components of fracture, fault core and matrix permeability, neither their evolution with time. We present a ternary plot that characterizes the fault zones permeability as well as their drainage properties. The ternary plot aims at (i) characterizing the fault zone permeability between the three vertices of matrix, fractures and fault core permeability ; and at (ii) defining the drain properties among 4 possible hydraulic system: (I) good horizontal and vertical, fault-perpendicular and -parallel; (II) moderate parallel fluid pathway; (III) good parallel fault-core and (IV) good parallel fractures. The ternary plot method is valid for 3 and 2 components fault zones. The application to the Castellas Fault case study show the simplicity and efficiency of the plot for studying underground and/or fossil, simple or polyphase faults in reservoirs with complete or limited permeability data.</p>


2021 ◽  
Author(s):  
Mark W. Fellgett ◽  
Richard Haslam

<p>The geothermal potential of the granites of SW England has long been known. The first significant exploration of the resource was in the Carnmenellis Granite under the ‘Hot Dry Rock (HDR) Project’ during the 80’s and early 90’s. Following completion of the HDR project there was little further exploration in the area for geothermal power generation. Recently however, development of the United Downs Deep Geothermal Power (UDDGP) project marks a significant leap forward, and this aims to be the first commercial project to explore deep geothermal power generation in SW England.</p><p> </p><p>The UDDGP project targets the Porthtowan Fault zone, a regional scale NW to NNW striking strike-slip fault that is inferred to transect the NE margin of the Carnmenellis Granite. Two directional wells were drilled to intersect this fault zone, maximising the surface area of the fault exposed. A production well with a measured depth of 5275 m true vertical depth of 5054 m and an injection well vertically above the production well at a measured depth of 2393 m and a true vertical depth of 2214 m. A full suite of geophysical wireline logs were collected for the production well, including borehole image logs from 900 mMD to 5160 mMD (900 - 4097mTVD).</p><p> </p><p>Interpretation of the borehole imaging across the 4260 m identified a total of 12031 discontinuities. The features were classified using a simple schema and provide new insights into the complex nature of faulting and fracturing within the Granite. Stress field indicators including Borehole Breakouts and Drilling Induced Tensile Fractures (DIFs) were also interpreted.</p><p> </p><p>The orientations of the borehole breakouts and DIFs are consistent and are comparable to previous measurements in the region and the regional stress field, indicating the direction of maximum compression is, approximately horizontal trending towards 320°.</p><p> </p><p>The data show variable fracture density along the imaged section of the well with the maximum density tentatively associated with discreet fault zones. At least 3 fracture sets are identified with the largest concentration of fractures approximately parallel to inferred Porthtowan Fault Zone, suggesting UD-1 intersected the target fault zone. Key fracture attributes are explored and discussed including orientation, spacing, intensity, and spatial correlation.</p>


Sign in / Sign up

Export Citation Format

Share Document