scholarly journals Tracing metal sources for the giant McArthur River Zn-Pb deposit (Australia) using lead isotopes

Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 478-482 ◽  
Author(s):  
Joséphine Gigon ◽  
Etienne Deloule ◽  
Julien Mercadier ◽  
David L. Huston ◽  
Antonin Richard ◽  
...  

Abstract Giant hydrothermal ore deposits form where fluids carrying massive amounts of metals scavenged from source rocks or magmas encounter conditions favorable for their localized deposition. However, in most cases, the ultimate origin of metals remains highly disputed. Here, we show for the first time that two metal sources have provided, in comparable amounts, the 8 Mt of lead of the giant McArthur River zinc-lead deposit (McArthur Basin, Northern Territory, Australia). By using high-resolution secondary ion mass spectrometry (SIMS) analysis of lead isotopes in galena, we demonstrate that the two metal sources were repeatedly involved in the metal deposition in the different ore lenses ca. 1640 Ma. Modeling of lead isotope fractionation between mantle and crustal reservoirs implicates felsic rocks of the crystalline basement and the derived sedimentary rocks in the basin as the main lead sources that were leached by the ore-forming fluids. This sheds light on the crucial importance of metal tracing as a prerequisite to constrain large-scale ore-forming systems, and calls for a paradigm shift in the way hydrothermal systems form giant ore deposits: leaching of metals from several sources may be key in accounting for their huge metal tonnage.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jean-Baptiste Raina ◽  
Peta L Clode ◽  
Soshan Cheong ◽  
Jeremy Bougoure ◽  
Matt R Kilburn ◽  
...  

Phytoplankton-bacteria interactions drive the surface ocean sulfur cycle and local climatic processes through the production and exchange of a key compound: dimethylsulfoniopropionate (DMSP). Despite their large-scale implications, these interactions remain unquantified at the cellular-scale. Here we use secondary-ion mass spectrometry to provide the first visualization of DMSP at sub-cellular levels, tracking the fate of a stable sulfur isotope (34S) from its incorporation by microalgae as inorganic sulfate to its biosynthesis and exudation as DMSP, and finally its uptake and degradation by bacteria. Our results identify for the first time the storage locations of DMSP in microalgae, with high enrichments present in vacuoles, cytoplasm and chloroplasts. In addition, we quantify DMSP incorporation at the single-cell level, with DMSP-degrading bacteria containing seven times more 34S than the control strain. This study provides an unprecedented methodology to label, retain, and image small diffusible molecules, which can be transposable to other symbiotic systems.


2020 ◽  
Vol 154 ◽  
pp. 104519 ◽  
Author(s):  
Laura Medeghini ◽  
Mostafa Fayek ◽  
Silvano Mignardi ◽  
Fulvio Coletti ◽  
Alessia Contino ◽  
...  

1995 ◽  
Vol 108 (5) ◽  
pp. 1895-1909 ◽  
Author(s):  
N. Stelly ◽  
S. Halpern ◽  
G. Nicolas ◽  
P. Fragu ◽  
A. Adoutte

The plasma membrane of ciliates is underlaid by a vast continuous array of membrane vesicles known as cortical alveoli. Previous work had shown that a purified fraction of these vesicles actively pumps calcium, suggesting that alveoli may constitute a calcium-storage compartment. Here we provide direct confirmation of this hypothesis using in situ visualization of total cell calcium on sections of cryofixed and cryosubstituted cells analyzed by SIMS (secondary ion mass spectrometry) microscopy a method never previously applied to protists. A narrow, continuous, Ca-emitting zone located all along the cell periphery was observed on sections including the cortex. In contrast, Na and K were evenly distributed throughout the cell. Various controls confirmed that emission was from the alveoli, in particular, the emitting zone was still seen in mutants totally lacking trichocysts, the large exocytotic organelles docked at the cell surface, indicating that they make no major direct contribution to the emission. Calcium concentration within alveoli was quantified for the first time in SIMS microscopy using an external reference and was found to be in the range of 3 to 5 mM, a value similar to that for sarcoplasmic reticulum. After massive induction of trichocyst discharge, this concentration was found to decrease by about 50%, suggesting that the alveoli are the main source of the calcium involved in exocytosis.


2018 ◽  
Vol 10 (9) ◽  
pp. 950-958 ◽  
Author(s):  
Derick N. Ateacha ◽  
Ulrike Koch ◽  
Carsten Engelhard

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used for the first time to characterize Cinchona alkaloids in natural Cinchona bark and commercial Cinchona extracts.


2010 ◽  
Vol 434-435 ◽  
pp. 169-172 ◽  
Author(s):  
Wei Kong Pang ◽  
It Meng Low ◽  
J.V. Hanna

The use of secondary-ion mass spectrometry (SIMS), nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) to detect the existence of amorphous silica in Ti3SiC2 oxidised at 500–1000°C is described. The formation of an amorphous SiO2 layer and its growth in thickness with temperature was monitored using dynamic SIMS. Results of NMR and TEM verify for the first time the direct evidence of amorphous silica formation during the oxidation of Ti3SiC2 at 1000°C.


Author(s):  
Nils Reinhardt ◽  
Axel Gerdes ◽  
Aratz Beranoaguirre ◽  
Max Frenzel ◽  
Lawrence D. Meinert ◽  
...  

AbstractHere, we present in situ U–Pb laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) ages of andradite-grossular garnet from four magmatic-hydrothermal polymetallic skarn prospects in the Schwarzenberg District, Erzgebirge (Germany), located in the internal zone of the Variscan Orogenic Belt. Within the geochronological framework of igneous rocks and hydrothermal mineralization in the Erzgebirge, the obtained garnet ages define three distinct episodes of Variscan skarn formation: (I) early late-collisional mineralization (338–331 Ma) recording the onset of magmatic-hydrothermal fluid flow shortly after the peak metamorphic event, (II) late-collisional mineralization (~ 327–310 Ma) related to the emplacement of large peraluminous granites following large-scale extension caused by orogenic collapse and (III) post-collisional mineralization (~ 310–295 Ma) contemporaneous with widespread volcanism associated with Permian crustal reorganization. Our results demonstrate that the formation of skarns in the Schwarzenberg District occurred episodically in all sub-stages of the Variscan orogenic cycle over a time range of at least 40 Ma. This observation is consistent with the age range of available geochronological data related to magmatic-hydrothermal ore deposits from other internal zones of the Variscan Orogenic Belt in central and western Europe. In analogy to the time–space relationship of major porphyry-Cu belts in South America, the congruent magmatic-hydrothermal evolution in the internal zones and the distinctly later (by ~ 30 Ma) occurrence of magmatic-hydrothermal ore deposits in the external zones of the Variscan Orogenic Belt may be interpreted as a function of their tectonic position relative to the Variscan collisional front.


2016 ◽  
Vol 7 ◽  
pp. 1783-1793 ◽  
Author(s):  
Ann-Kathrin Kleinschmidt ◽  
Lars Barzen ◽  
Johannes Strassner ◽  
Christoph Doering ◽  
Henning Fouckhardt ◽  
...  

Reflectance anisotropy spectroscopy (RAS) equipment is applied to monitor dry-etch processes (here specifically reactive ion etching (RIE)) of monocrystalline multilayered III–V semiconductors in situ. The related accuracy of etch depth control is better than 16 nm. Comparison with results of secondary ion mass spectrometry (SIMS) reveals a deviation of only about 4 nm in optimal cases. To illustrate the applicability of the reported method in every day settings for the first time the highly etch depth sensitive lithographic process to form a film lens on the waveguide ridge of a broad area laser (BAL) is presented. This example elucidates the benefits of the method in semiconductor device fabrication and also suggests how to fulfill design requirements for the sample in order to make RAS control possible.


2020 ◽  
Vol 17 (18) ◽  
pp. 4727-4743
Author(s):  
Anne Roepert ◽  
Lubos Polerecky ◽  
Esmee Geerken ◽  
Gert-Jan Reichart ◽  
Jack J. Middelburg

Abstract. Over the last few decades, a suite of inorganic proxies based on foraminiferal calcite have been developed, some of which are now widely used for palaeoenvironmental reconstructions. Studies of foraminiferal shell chemistry have largely focused on cations and oxyanions, while much less is known about the incorporation of anions. The halogens fluoride and chloride are conservative in the ocean, which makes them candidates for reconstructing palaeoceanographic parameters. However, their potential as a palaeoproxy has hardly been explored, and fundamental insight into their incorporation is required. Here we used nanoscale secondary ion mass spectrometry (NanoSIMS) to investigate, for the first time, the distribution of Cl and F within shell walls of four benthic species of foraminifera. In the rotaliid species Ammonia tepida and Amphistegina lessonii, Cl and F were distributed highly heterogeneously within the shell walls, forming bands that were co-located with the bands observed in the distribution of phosphorus (significant positive correlation of both Cl and F with P; p<0.01). In the miliolid species Sorites marginalis and Archaias angulatus, the distribution of Cl and F was much more homogeneous without discernible bands. In these species, Cl and P were spatially positively correlated (p<0.01), whereas no correlation was observed between Cl and F or between F and P. Additionally, their F content was about an order of magnitude higher than in the rotaliid species. The high variance in the Cl and F content in the studied foraminifera specimens could not be attributed to environmental parameters. Based on these findings, we suggest that Cl and F are predominately associated with organic linings in the rotaliid species. We further propose that Cl may be incorporated as a solid solution of chlorapatite or may be associated with organic molecules in the calcite in the miliolid species. The high F content and the lack of a correlation between Cl and F or P in the miliolid foraminifera suggest a fundamentally different incorporation mechanism. Overall, our data clearly show that the calcification pathway employed by the studied foraminifera governs the incorporation and distribution of Cl, F, P, and other elements in their calcite shells.


1988 ◽  
Vol 3 (4) ◽  
pp. 694-704 ◽  
Author(s):  
A. Virag ◽  
G. Friedbacher ◽  
M. Grasserbauer ◽  
H. M. Ortner ◽  
P. Wilhartitz

Electron beam melting has been used to obtain ultrapure refractory metals that are gaining importance in metal oxide semiconductor-very large scale integration (MOS-VLSI) processing technology, fusion reactor technology, or as superconducting materials. Although the technology of electron beam melting is well established in the field of production of very clean refractory metals, little is known about the limitations of the method because the impurity level of the final products is frequently below the detection power of common methods for trace analysis. Characterization of these materials can be accomplished primarily by in situ methods like neutron activation analysis and mass spectrometric methods [glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS)]. A suitable method for quantitative multielement ultratrace bulk analysis of molybdenum with SIMS has been developed. Detection limits of the analyzed elements from 10−7g/gdown to 10−12g/g have been found. Additional information about the distribution of the trace elements has been accumulated.


2019 ◽  
Author(s):  
Anne Roepert ◽  
Lubos Polerecky ◽  
Esmee Geerken ◽  
Gert-Jan Reichart ◽  
Jack J. Middelburg

Abstract. Over the last decades a suite of inorganic proxies based on foraminiferal calcite have been developed, of which some are now widely used for paleoenvironmental reconstructions. Studies of foraminiferal shell chemistry have largely focused on cations and oxyanions, while much less is known about the incorporation of anions. The halogens fluoride and chloride are conservative in the ocean, which makes them candidates for reconstructing paleoceanographic parameters. However, their potential as a paleoproxy has hardly been explored, and fundamental insight in their incorporation is required. Here we used nano-scale secondary ion mass spectrometry (NanoSIMS) to investigate, for the first time, the distribution of Cl and F within shell walls of four benthic species of foraminifera. In the rotaliid species Ammonia tepida and Amphistegina lessonii Cl and F were highly heterogeneous and correlated within the shell walls, forming bands that were co-located with the banded distribution of phosphorus. In the miliolid species Sorites marginalis and Archaias angulatus the distribution of Cl and F was much more homogeneous without discernible bands. In these species Cl and P were correlated, whereas no correlation was observed between Cl and F or between F and P. Additionally, their F content was about an order of magnitude higher than in the rotaliid species. The high variance in the Cl and F content in the studied foraminifera could not be attributed to environmental parameters. Based on these findings we suggest that in the rotaliid species Cl and F are predominately associated with organic linings. We further propose that in the miliolid species Cl may be incorporated as a solid solution of chlorapatite or associated with organic molecules in the calcite. The high F content together with the lack of correlation between Cl and F or P in the miliolid foraminifera suggests a fundamentally different incorporation mechanism. Overall, our data clearly show that the calcification pathway employed by the studied foraminifera governs the incorporation and distribution of Cl, F, P and other elements in their calcite shells.


Sign in / Sign up

Export Citation Format

Share Document