scholarly journals Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana

Geology ◽  
2021 ◽  
Author(s):  
T.D. Frank ◽  
C.R. Fielding ◽  
A.M.E. Winguth ◽  
K. Savatic ◽  
A. Tevyaw ◽  
...  

Rapid climate change was a major contributor to the end-Permian extinction (EPE). Although well constrained for the marine realm, relatively few records document the pace, nature, and magnitude of climate change across the EPE in terrestrial environments. We generated proxy records for chemical weathering and land surface temperature from continental margin deposits of the high-latitude southeastern margin of Gondwana. Regional climate simulations provide additional context. Results show that Glossopteris forest-mire ecosystems collapsed during a pulse of intense chemical weathering and peak warmth, which capped ~1 m.y. of gradual warming and intensification of seasonality. Erosion resulting from loss of vegetation was short lived in the low-relief landscape. Earliest Triassic climate was ~10–14 °C warmer than the late Lopingian and landscapes were no longer persistently wet. Aridification, commonly linked to the EPE, developed gradually, facilitating the persistence of refugia for moisture-loving terrestrial groups.

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1551
Author(s):  
Jiaqi Zhang ◽  
Xiangjin Shen ◽  
Yanji Wang ◽  
Ming Jiang ◽  
Xianguo Lu

The area and vegetation coverage of forests in Changbai Mountain of China have changed significantly during the past decades. Understanding the effects of forests and forest coverage change on regional climate is important for predicting climate change in Changbai Mountain. Based on the satellite-derived land surface temperature (LST), albedo, evapotranspiration, leaf area index, and land-use data, this study analyzed the influences of forests and forest coverage changes on summer LST in Changbai Mountain. Results showed that the area and vegetation coverage of forests increased in Changbai Mountain from 2003 to 2017. Compared with open land, forests could decrease the summer daytime LST (LSTD) and nighttime LST (LSTN) by 1.10 °C and 0.07 °C, respectively. The increase in forest coverage could decrease the summer LSTD and LSTN by 0.66 °C and 0.04 °C, respectively. The forests and increasing forest coverage had cooling effects on summer temperature, mainly by decreasing daytime temperature in Changbai Mountain. The daytime cooling effect is mainly related to the increased latent heat flux caused by increasing evapotranspiration. Our results suggest that the effects of forest coverage change on climate should be considered in climate models for accurately simulating regional climate change in Changbai Mountain of China.


2021 ◽  
Author(s):  
Maria Chara Karypidou ◽  
Eleni Katragkou ◽  
Stefan Pieter Sobolowski

Abstract. The region of southern Africa (SAF) is highly vulnerable to the impacts of climate change and is projected to experience severe precipitation shortages in the coming decades. Ensuring that our modelling tools are fit for the purpose of assessing these changes is critical. In this work we compare a range of satellite products along with gauge-based datasets. Additionally, we investigate the behaviour of regional climate simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX) – Africa domain, along with simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6). We identify considerable variability in the standard deviation of precipitation between satellite products that merge with rain gauges and satellite products that do not, during the rainy season (Oct–Mar), indicating high observational uncertainty for specific regions over SAF. Good agreement both in spatial pattern and the strength of the calculated trends is found between satellite and gauge-based products, however. Both CORDEX-Africa and CMIP5 ensembles underestimate the observed trends during the analysis period. The CMIP6 ensemble displayed persistent drying trends, in direct contrast to the observations. The regional ensemble exhibited improved performance compared to its forcing (CMIP5), when the annual cycle and the extreme precipitation indices were examined, confirming the added value of the higher resolution regional climate simulations. The CMIP6 ensemble displayed a similar behaviour to CMIP5, however reducing slightly the ensemble spread. However, we show that reproduction of some key SAF phenomena, like the Angolan Low (which exerts a strong influence on regional precipitation), still poses a challenge for the global and regional models. This is likely a result of the complex climatic process that take place. Improvements in observational networks (both in-situ and satellite), as well as continued advancements in high-resolution modelling will be critical, in order to develop a robust assessment of climate change for southern Africa.


2021 ◽  
Author(s):  
Roman Brogli ◽  
Silje Lund Sørland ◽  
Nico Kröner ◽  
Christoph Schär

<div> <p><span>It has long been recognized that the Mediterranean is a ‘hot-spot’ of climate change. The model-projected year-round precipitation decline and amplified summer warming are among the leading causes of the vulnerability of the Mediterranean to greenhouse gas-driven warming. We investigate large-scale drivers influencing both the Mediterranean drying and summer warming in regional climate simulations. To isolate the influence of multiple large-scale drivers, we sequentially add the respective drivers from global models to regional climate model simulations. Additionally, we confirm the robustness of our results across multiple ensembles of global and regional climate simulations.</span></p> </div><div> <p><span>We will present in detail how changes in the atmospheric stratification are key in causing the amplified Mediterranean summer warming. Together with the land-ocean warming contrast, stratification changes also drive the summer precipitation decline. Summer circulation changes generally have a surprisingly small influence on the changing Mediterranean summer climate. In contrast, changes in the circulation are the primary driver for the projected winter precipitation decline. Since land-ocean contrast and stratification changes are more robust in global climate simulations than circulation changes, we argue that the uncertainty associated with the projected climate change patterns should be considered smaller in summer than in winter.</span></p> </div><div> <p><span>References:</span></p> </div><div> <p><span>Brogli, R., S. L. Sørland, N. Kröner, and C. Schär, 2019: Causes of future Mediterranean precipitation decline depend on the season. Environmental Research Letters, 14, 114017, doi:10.1088/1748-9326/ab4438.</span></p> </div><div> <p><span>Brogli, R., N. Kröner, S. L. Sørland, D. Lüthi and C. Schär, 2019: The Role of Hadley Circulation and Lapse-Rate Changes for the Future European Summer Climate. Journal of Climate, 32, 385-404, doi:10.1175/JCLI-D-18-0431.1</span></p> </div>


2019 ◽  
Vol 58 (4) ◽  
pp. 831-852 ◽  
Author(s):  
Yiling Huo ◽  
W. Richard Peltier

AbstractThe complex orography of South Asia, including both the Himalayas and the Tibetan Plateau, renders the regional climate complex. How this climate, especially the monsoon circulations, will respond to the global warming process is important given the large population of the region. In a first step toward a contribution to the understanding of the expected impacts, a series of dynamically downscaled instrumental-era climate simulations for the Indian subcontinent are described and will serve as a basis for comparison against global warming simulations. Global simulations based upon the Community Earth System Model (CESM) are employed to drive a dynamical downscaling pipeline in which the Weather Research and Forecasting (WRF) Model is employed as regional climate model, in a nested configuration with two domains at 30- and 10-km resolution, respectively. The entire ensemble was integrated for 15 years (1980–94), with the global model representing a complete integration from the onset of Northern Hemisphere industrialization. Compared to CESM, WRF significantly improves the representation of orographic precipitation. Precipitation extremes are also characterized using extreme value analysis. To investigate the sensitivity of the South Asian summer monsoon simulation to different parameterization schemes, a small physics ensemble is employed. The Noah multiphysics (Noah-MP) land surface scheme reduces the summer warm bias compared to the Noah land surface scheme. Compared with the Kain–Fritsch cumulus scheme, the Grell-3 scheme produces an increased moisture bias at the first western rain barrier, whereas the Tiedtke scheme produces less precipitation over the subcontinent than observed. Otherwise the improvement of fit to the observations derived from applying the downscaling methodology is highly significant.


2015 ◽  
Vol 28 (17) ◽  
pp. 6707-6728 ◽  
Author(s):  
Melissa S. Bukovsky ◽  
Carlos M. Carrillo ◽  
David J. Gochis ◽  
Dorit M. Hammerling ◽  
Rachel R. McCrary ◽  
...  

Abstract This study presents climate change results from the North American Regional Climate Change Assessment Program (NARCCAP) suite of dynamically downscaled simulations for the North American monsoon system in the southwestern United States and northwestern Mexico. The focus is on changes in precipitation and the processes driving the projected changes from the regional climate simulations and their driving coupled atmosphere–ocean global climate models. The effect of known biases on the projections is also examined. Overall, there is strong ensemble agreement for a large decrease in precipitation during the monsoon season; however, this agreement and the magnitude of the ensemble-mean change is likely deceiving, as the greatest decreases are produced by the simulations that are the most biased in the baseline/current climate. Furthermore, some of the greatest decreases in precipitation are being driven by changes in processes/phenomena that are less credible (e.g., changes in El Niño–Southern Oscillation, when it is initially not simulated well). In other simulations, the processes driving the precipitation change may be plausible, but other biases (e.g., biases in low-level moisture or precipitation intensity) appear to be affecting the magnitude of the projected changes. The most and least credible simulations are clearly identified, while the other simulations are mixed in their abilities to produce projections of value.


2009 ◽  
Vol 33 (6) ◽  
pp. 869-892 ◽  
Author(s):  
Allison L. Steiner ◽  
Jeremy S. Pal ◽  
Sara A. Rauscher ◽  
Jason L. Bell ◽  
Noah S. Diffenbaugh ◽  
...  

2021 ◽  
Author(s):  
Xia Zhang ◽  
Liang Chen ◽  
Zhuguo Ma ◽  
Jianping Duan ◽  
Danqiong Dai ◽  
...  

Abstract Land–atmosphere energy and moisture exchange can strongly influence local and regional climate. However, high uncertainty exits in the representation of land–atmosphere interactions in numerical models. The parameterization of surface exchange process is greatly affected by varying the parameter Czil which, however, is typically set to a domain-wide constant value. In this study, we examine the sensitivity of regional climate simulations over China to different surface exchange strengths using three Czil schemes (default without Czil , constant Czil = 0.1, and dynamic canopy-height-dependent Czil -h schemes) in the 13-km-resolution Weather Research and Forecasting model coupled with a Noah land surface model with multi-parameterization options (WRF/Noah-MP). Our results demonstrate that the Czil -h scheme substantially reduces the overestimations of land–atmosphere coupling strength in the other two schemes, and comparisons with the ChinaFLUX observations indicate the capability of the Czil -h scheme to better match the observed surface energy and water variations. The results of the Czil schemes applying to four typical climate zones of China present that the Czil -h simulations are in the closest agreements with the field observations. The Czil -h scheme can narrow the positive discrepancies of simulated precipitation and surface fluxes as well as the negative biases of Ts in areas of Northeast, North China, Eastern Northwest, and Southwest. Especially, the above remarkable improvements produced by the Czil -h scheme are primarily over areas covering short vegetation. Also noted that the precipitation simulated by the Czil -h scheme exhibits more intricate and unclear changes compared with surface fluxes simulations due to the non-local impacts of surface exchange strength resulted from the fluidity of the atmosphere. Overall, our findings highlight the applicability of the dynamical Czil as a better physical alternative to treat the surface exchange process in atmosphere coupling models.


Sign in / Sign up

Export Citation Format

Share Document