Modification of polysaccharides from callus culture of Silene vulgaris (M.) G. using carbohydrases in vitro

2007 ◽  
Vol 72 (9) ◽  
pp. 1008-1015
Author(s):  
E. A. Gunter ◽  
O. V. Popeyko ◽  
Yu. S. Ovodov
2020 ◽  
Vol 16 (6) ◽  
pp. 937-941
Author(s):  
Sharad Vats ◽  
Preeti Mehra

Background: Vector-borne diseases are quite prevalent globally and are one of the major causes of deaths due to infectious diseases. There is an availability of synthetic insecticides, however, their excessive and indiscriminate use have resulted in the emergence of resistant varieties of insects. Thus, a search for novel biopesticide has become inevitable. Methods: Rotenoids were isolated and identified from different parts of Medicago sativa L. This group of metabolites was also identified in the callus culture, and the rotenoid content was monitored during subculturing for a period of 10 months. Enhancement of the rotenoid content was evaluated by feeding precursors in a tissue culture medium. Results: Four rotenoids (elliptone, deguelin, rotenone and Dehydrorotenone) were identified, which were confirmed using spectral and chromatographic techniques. The maximum rotenoid content was found in the seeds (0.33±0.01%), followed by roots (0.31±0.01%) and minimum in the aerial parts (0.20±0.05%). A gradual decrease in the rotenoid content was observed with the ageing of subcultured tissue maintained for 10 months. The production of rotenoids was enhanced up to 2 folds in the callus culture using amino acids, Phenylalanine and Methionine as precursors as compared to the control. The LC50 value of the rotenoids was found to be 91 ppm and 162 ppm against disease vectors of malaria and Dracunculiasis, respectively. Conclusion: The study projects M. sativa as a novel source of biopesticide against the disease vectors of malaria and Dracunculiasis. The use of precursors to enhance the rotenoid content in vitro can be an effective venture from a commercial point of view.


1990 ◽  
Vol 45 (6) ◽  
pp. 602-606 ◽  
Author(s):  
B. Merkel ◽  
J. Reichling

Abstract Unorganized callus and leaf/root-differentiating callus cultures of Pimpinella major have been established in liquid nutrient medium. Their capacity to accumulate rare phenylpropanoids such as epoxy-pseudoisoeugenol tiglate, epoxy-anol tiglate and anol tiglate was compared with that of seedlings and whole plants. The unorganized callus cultures were not able to accumulate any phenylpropanoids. In comparison, the leaf/root-differentiating callus culture promoted the accumulation of epoxy-pseudoisoeugenol tiglate (up to 90 mg/100 g fr.wt.) but not that of anol-derivatives. The accumulated amount of EPT in PMD-SH was comparable with that in plant seedlings.


2014 ◽  
Vol 69 (3) ◽  
pp. 193-195 ◽  
Author(s):  
Halina Ekiert ◽  
Wanda Kisiel

Four furanocoumarins: bergapten, xanthotoxin, isopimpinellin (linear furanocoumarins) and sphondin (angular furanocoumarin) were isolated for the first time from callus tissues of <em>Pastinaca sativa</em> L.(<em>Apiaceae</em>) cultured in vitro on solid medium. The compounds were identified using spectral methods. They are well-known secondary metabolites of the intact plant. This is the first report on the isolation of sphondin from in vitro plant cultures.


1996 ◽  
Vol 46 (4) ◽  
pp. 315-320
Author(s):  
Perumal Venkatachalam ◽  
Adaikalam Subramaniampillai ◽  
Narayanasamylpillai Jayabalan

2019 ◽  
Vol 20 (7) ◽  
pp. 1787 ◽  
Author(s):  
Muhammad Asad Ullah ◽  
Duangjai Tungmunnithum ◽  
Laurine Garros ◽  
Samantha Drouet ◽  
Christophe Hano ◽  
...  

Lepidium sativum L. is a rich source of polyphenols that have huge medicinal and pharmaceutical applications. In the current study, an effective abiotic elicitation strategy was designed for enhanced biosynthesis of polyphenols in callus culture of L. sativum. Callus was exposed to UV-C radiations for different time intervals and various concentrations of melatonin. Secondary metabolites were quantified by using high-performance liquid chromatography (HPLC). Results indicated the total secondary metabolite accumulation of nine quantified compounds was almost three fold higher (36.36 mg/g dry weight (DW)) in melatonin (20 μM) treated cultures, whereas, in response to UV-C (60 min), a 2.5 fold increase (32.33 mg/g DW) was recorded compared to control (13.94 mg/g DW). Metabolic profiling revealed the presence of three major phytochemicals, i.e., chlorogenic acid, kaemferol, and quercetin, in callus culture of L. sativum. Furthermore, antioxidant, antidiabetic, and enzymatic activities of callus cultures were significantly enhanced. Maximum antidiabetic activities (α-glucosidase: 57.84%; α-amylase: 62.66%) were recorded in melatonin (20 μM) treated callus cultures. Overall, melatonin proved to be an effect elicitor compared to UV-C and a positive correlation in these biological activities and phytochemical accumulation was observed. The present study provides a better comparison of both elicitors and their role in the initiation of physiological pathways for enhanced metabolites biosynthesis in vitro callus culture of L. sativum.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 102 ◽  
Author(s):  
Ewa Muszyńska ◽  
Mateusz Labudda ◽  
Adam Kral

This research aimed to indicate mechanisms involved in protection against the imbalanced generation of reactive oxygen species (ROS) during heavy metals (HMs) exposition of Silene vulgaris ecotypes with different levels of metal tolerance. Specimens of non-metallicolous (NM), calamine (CAL), and serpentine (SER) ecotypes were treated in vitro with Zn, Pb, and Cd ions applied simultaneously in concentrations that reflected their contents in natural habitats of the CAL ecotype (1× HMs) and 2.5- or 5.0-times higher than the first one. Our findings confirmed the sensitivity of the NM ecotype and revealed that the SER ecotype was not fully adapted to the HM mixture, since intensified lipid peroxidation, ultrastructural alternations, and decline in photosynthetic pigments’ content were ascertained under HM treatment. These changes resulted from insufficient antioxidant defense mechanisms based only on ascorbate peroxidase (APX) activity assisted (depending on HMs concentration) by glutathione-S-transferase (GST) and peroxidase activity at pH 6.8 in the NM ecotype or by GST and guaiacol-type peroxidase in the SER one. In turn, CAL specimens showed a hormetic reaction to 1× HMs, which manifested by both increased accumulation of pigments and most non-enzymatic antioxidants and enhanced activity of catalase and enzymes from the peroxidase family (with the exception of APX). Interestingly, no changes in superoxide dismutase activity were noticed in metallicolous ecotypes. To sum up, the ROS scavenging pathways in S. vulgaris relied on antioxidants specific to the respective ecotypes, however the synthesis of polyphenols was proved to be a universal reaction to HMs.


Planta ◽  
2019 ◽  
Vol 249 (6) ◽  
pp. 1761-1778 ◽  
Author(s):  
Ewa Muszyńska ◽  
Mateusz Labudda ◽  
Elżbieta Różańska ◽  
Ewa Hanus-Fajerska ◽  
Anna Koszelnik-Leszek

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4859 ◽  
Author(s):  
Saher Nazir ◽  
Hasnain Jan ◽  
Duangjai Tungmunnithum ◽  
Samantha Drouet ◽  
Muhammad Zia ◽  
...  

Thai basil is a renowned medicinal plant and a rich source of bioactive antioxidant compounds with several health benefits, with actions to prevent of cancer, diabetes and cardiovascular disease. Plant cell and tissue culture technologies can be routinely established as an important, sustainable and low-cost biomass source to produce high-value phytochemicals. The current study aimed at developing an effective protocol to produce Thai basil leaf-derived callus cultures with sustainable and high production of biomass and antioxidants as an alternative of leaves production. MS basal medium with various concentrations of plant growth regulators (PGRs) compatible with nutraceutical applications (i.e., gibberellic acid (GA3) and 6-benzylaminopurine (BAP) either alone or in combination with naphthalene acetic acid (NAA)) were evaluated. Among all tested PGRs, the combination BAP:NAA (5 mg/L:1 mg/L) yields the maximum biomass accumulation (fresh weight (FW): 190 g/L and dry weight (DW): 13.05 g/L) as well as enhanced phenolic (346.08 mg/L) production. HPLC quantification analysis indicated high productions of chicoric acid (35.77 mg/g DW) and rosmarinic acid (7.35 mg/g DW) under optimized callus culture conditions. Antioxidant potential was assessed using both in vitro cell free and in vivo cellular antioxidant assays. Maximum in vitro antioxidant activity DPPH (93.2% of radical scavenging activity) and ABTS (1322 µM Trolox equivalent antioxidant capacity) was also observed for the extracts from callus cultures grown in optimal conditions. In vivo cellular antioxidant activity assay confirmed the effective protection against oxidative stress of the corresponding extract by the maximum inhibition of ROS and RNS production. Compared to commercial leaves, callus extracts showed higher production of chicoric acid and rosmarinic acid associated with higher antioxidant capacity. In addition, this biological system also has a large capacity for continuous biomass production, thus demonstrating its high potential for possible nutraceutical applications.


2012 ◽  
Vol 21 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Lyssa L. Martin ◽  
Cynthia Ross Friedman ◽  
Ronald G. Smith

The lodgepole pine dwarf mistletoe Arceuthobium americanum is a severe pest in coniferous forests of western North America.  To facilitate laboratory studies of this obligate parasite, a modified White’s medium was used for in vitro culture; the concentrations of IAA and Kn were varied to determine optimal IAA/Kn ratios.  It was found that explant health was related to the concentration of IAA (p = 0.008), but not Kn (p = 0.937), and that explants were healthiest at an IAA/Kn ratio of 0.1.  Radicular apices were generated at IAA/Kn ratios of 1.0 or greater, but no shoot organogenesis was observed.  These data suggest that A. americanum is more sensitive to auxins than cytokinins.  Parasites of plants are known to secrete high levels of cytokinins, which stimulate the host to shuttle nutrients to the infected area, and so we suspect that A. americanum has reduced cytokinin sensitivity.   Key words: Callus culture, Arceuthobium americanum, Explant, Response, Cytokinin, Insensitivity   D.O.I. 10.3329/ptcb.v21i1.9557   Plant Tissue Cult. & Biotech. 21(1): 1-10, 2011 (June)


Sign in / Sign up

Export Citation Format

Share Document