scholarly journals Erratum to: Gene Expression of Protease Inhibitors in Tomato Plants with Invasion by Root-Knot Nematode Meloidogyne incognita and Modulation of Their Activity with Salicylic and Jasmonic Acids

2021 ◽  
Vol 48 (4) ◽  
pp. 518-518
Author(s):  
S. V. Zinovieva ◽  
Zh. V. Udalova ◽  
V. V. Seiml-Buchinger ◽  
F. K. Khasanov
2012 ◽  
Vol 102 (3) ◽  
pp. 260-266 ◽  
Author(s):  
A. Martinuz ◽  
A. Schouten ◽  
R. A. Sikora

The root-knot nematode, Meloidogyne incognita, is among the most damaging agricultural pests, particularly to tomato. The mutualistic endophytes Fusarium oxysporum strain Fo162 (Fo162) and Rhizobium etli strain G12 (G12) have been shown to systemically induce resistance toward M. incognita. By using triple-split-root tomato plants, spatially separated but simultaneous inoculation of both endophytes did not lead to additive reductions in M. incognita infection. More importantly, spatially separated inoculation of Fo162 and G12 led to a reduction in Fo162 root colonization of 35 and 39% when G12 was inoculated on a separate root section of the same plant in two independent experiments. In an additional split-root experiment, spatial separation of Fo162 and G12 resulted in a reduction of Fo162 root colonization of approximately 50% over the water controls in two independent experiments. The results suggested that the suppressive activity of G12 on Fo162 and M. incognita is possibly related to the induction of specific plant defense mechanisms. Thus, although Fo162 and G12 have the ability to systemically repress M. incognita infection in tomato, they can be considered incompatible biocontrol agents when both organisms are present simultaneously on the same root system.


2021 ◽  
Author(s):  
Martine Da Rocha ◽  
Caroline Bournaud ◽  
Julie Dazeniere ◽  
Peter Thorpe ◽  
Clement Pellegrin ◽  
...  

Root-knot nematodes are the major contributor to the crop losses caused by nematodes. Root-knot nematodes secrete effectors into the plant, derived from two sets of pharyngeal gland cells, to manipulate host physiology and immunity. Successful completion of the life cycle, involving successive molts from egg to adult, covers morphologically and functionally distinct stages and will require precise control of gene expression, including effectors. The details of how root-knot nematodes regulate transcription remain sparse. Here, we report a life stage-specific transcriptome of Meloidogyne incognita. Combined with an available annotated genome, we explore the spatio-temporal regulation of gene expression. We reveal gene expression clusters and predicted functions that accompany the major developmental transitions. Focusing on effectors, we identify a putative cis-regulatory motif associated with expression in the dorsal glands: providing an insight into effector regulation. We combine the presence of this motif with several other criteria to predict a novel set of putative dorsal gland effectors. Finally, we show this motif, and thereby its utility, is broadly conserved across the Meloidogyne genus and termed it Mel-DOG. Taken together, we provide the first genome-wide analysis of spatio-temporal gene expression in a root-knot nematode, and identify a new set of candidate effector genes that will guide future functional analyses.


Nematology ◽  
2001 ◽  
Vol 3 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Jaap Bakker ◽  
Fred Gommers ◽  
Geert Smant ◽  
Pierre Abad ◽  
Marie-Noëlle Rosso ◽  
...  

AbstractExpressed sequence tags (EST) have been widely used to assist in gene discovery in various organisms (e.g., Arabidopsis thaliana, Caenorhabditis elegans, Mus musculus, and Homo sapiens). In this paper we describe an EST project, which aims to investigate gene expression in Meloidogyne incognita at the onset of parasitism. Approximately 1000 5′-end sequence tags were produced from a cDNA library made of freshly hatched preparasitic second stage juveniles (J2). The EST were identified in the primary transformants of the cDNA library, and assigned to nine different functional groups, including (candidate) parasitism genes. A large fraction of the EST (45%) did not have a putative homologue in public databases. Sixty five percent of the EST that could be clustered into a functional group had putative homologues in other nematode species. EST were found for virtually all parasitism related genes that have been cloned from M. incognita to date. In addition, several novel genes were tagged, including a xylanase and a chitinase gene. The efficiency of EST projects, which produce sequence data for thousands of genes in months time without any difficult pre-selections of mRNA pools, makes random sequencing cDNA libraries a superior method to identify candidates for parasitism related genes in plant-parasitic nematodes. The sequences in this paper are retrievable from Genbank with the accession numbers BE191640 to BE191741, BE217592 to BE217720, BE225324 to BE225598, BE238852 to BE239221, and BE240829 to BE240865.


Nematology ◽  
2011 ◽  
Vol 13 (5) ◽  
pp. 509-520 ◽  
Author(s):  
Tushar K. Dutta ◽  
Stephen J. Powers ◽  
Brian R. Kerry ◽  
Hari S. Gaur ◽  
Rosane H.C. Curtis

AbstractThe rice root-knot nematode Meloidogyne graminicola normally infects rice, wheat and several other graminaceous plants. Meloidogyne incognita is a serious pest of dicotyledonous crops, although it can infect and reproduce on some cereals. This paper demonstrates and compares host recognition, development and reproduction of these two species of root-knot nematodes on rice and tomato plants. Attraction bioassays in pluronic gel clearly showed that M. incognita preferred tomato roots to rice or mustard roots, whilst M. graminicola was more attracted towards rice compared with tomato or mustard roots. Based on the attraction data from this study, it can be hypothesised that either: i) the blend of attractants and repellents are different in good and poor hosts; or ii) relatively long-range attractants, together with shorter-range repellents, might affect nematode movement patterns. Some host specific attractants might also be involved. Meloidogyne incognita was able to invade and develop to adult female but did not produce eggs in rice roots. By contrast, M. graminicola developed and reproduced faster on both rice and tomato plants compared with M. incognita. Nevertheless, second-stage juveniles of both these root-knot nematodes showed a similar pattern of distribution inside the roots, preferring to accumulate at the root tips of rice or in the vascular cylinder and cortical region of tomato.


BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Heba MM Ibrahim ◽  
Parsa Hosseini ◽  
Nadim W Alkharouf ◽  
Ebtissam HA Hussein ◽  
Abd El Kader Y Gamal El-Din ◽  
...  

2021 ◽  
pp. 520-525
Author(s):  
Udalova ◽  
Zinovieva

Selenium (Se), silicon (Si) and nickel (Ni) are essential microelements in plants. Their deficiency can have a significant impact on the growth and development of plants, and on nematode infestation. The study of the possibility of regulating the interaction of plants with root-knot nematode by means of exogenous foliar treatments with solutions of nanosized Se, Si and Ni has been conducted. Susceptible tomato plants were treated in the seed phase and the growing plants were sprayed with aqueous solutions of nanosized microelements (Se – 0.6; Ni – 0.1; Si – 2 mg/l). The influence of treatments on the infestation of tomatoes by the root-knot nematode Meloidogyne incognita, as well as on the development of plants and the quantitative and qualitative composition of photosynthetic pigments, as the most sensitive indicator of the pathological state of plants, was studied. A decrease in the infestation of tomatoes with a nematode in the Se<Si<Ni series is shown. The treated plants were dominated by larvae. An increase in the entire pool of photosynthetic pigments or individual pigments was observed when treated with nanosized microelements. The greatest effect on the infestation of the root system, the development of nematodes and the content of photosynthetic pigments was obtained when plants were treated with nanosized nickel. It is obvious that these elements have an individual metabolic effect on plant tissues, but it is obvious that they have a beneficial effect on tomato plants, which allows us to consider them as inductors that increase resistance to root-knot nematode.


Sign in / Sign up

Export Citation Format

Share Document