Spreading and mechanisms of antimicrobial resistance in microorganisms, producing beta-lactamases. Molecular mechanisms of resistance to beta-lactam antibiotics of Klebsiella spp. strains, isolated in cases of nosocomial infections

2008 ◽  
Vol 2 (3) ◽  
pp. 311-317
Author(s):  
D. V. Ivanov ◽  
A. M. Egorov
2020 ◽  
Vol 13 (3) ◽  
pp. 135-140
Author(s):  
HauwaYakubu ◽  
Mahmud Yerima Iliyasu ◽  
Asma’u Salisu ◽  
Abdulmumin Ibrahim Sulaiman ◽  
Fatima Tahir ◽  
...  

Carbapenemases are microbial enzymes that confer resistance to virtually all available beta-lactam antibiotics and the most frequent carbapenemases are the Klebsiella pneumoniae Carbapenamase (KPC). Detection of carbapenemases is a significant infection control strategy as the enzymes are often associated with extensive antimicrobial resistance, therapeutic failures and mortality associated with infectious diseases. A total of 400 clinical samples were collected from different groups of patients in Abubakar Tafawa Balewa University Teaching Hospital, Bauchi, Nigeria and 118 K. pneumoniae were isolated using standard microbiological techniques. The isolates were subjected to antibiotic susceptibility testing by Kirby-Bauer disc diffusion method, then screened for Carbapenamase production using modified Hodge test. The results indicated that the isolates were resistant to Ampicillin (61.9%), Ceftriaxone (50.8%) and Ceftazidime (50.8%), then Ciprofloxacin (54.2%), but predominantly sensitive to Imipenem (66.9%), Eterpenem (60.2%) and Meropenem (65.3%). It was found that 38 (32.2%) of the isolates phenotypically shows the presence of Carbapenamase, with highest frequency of (40.7%) among patients, mainly adult females with cases of Urinary Tract Infections (UTIs) and the least from wound (11.8%).This study revealed that the isolates produced other beta-lactamases than KPC or variants of Carbapenamase that cannot be detected by modified Hodge test, thus shows low resistance to carbapenems. Therefore further studies is needed to genotypically confirm the presence of KPC in these isolates.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammad Sadegh Rezai ◽  
Ebrahim Salehifar ◽  
Alireza Rafiei ◽  
Taimour Langaee ◽  
Mohammadreza Rafati ◽  
...  

Escherichia coliremains as one of the most important bacteria causing infections in pediatrics and producing extended-spectrum beta-lactamases (ESBLs) making them resistant to beta-lactam antibiotics. In this study we aimed to genotype ESBL-producingE. coliisolates from pediatric patients for ESBL genes and determine their association with antimicrobial resistance. One hundred of theE. coliisolates were initially considered ESBL producing based on their MIC results. These isolates were then tested by polymerase chain reaction (PCR) for the presence or absence ofCTX,TEM,SHV,GES, andVEBbeta-lactamase genes. About 30.5% of isolatedE. coliwas ESBL-producing strain. TheTEMgene was the most prevalent (49%) followed bySHV(44%),CTX(28%),VEB(8%), andGES(0%) genes. The ESBL-producingE. coliisolates were susceptible to carbapenems (66%) and amikacin (58%) and showed high resistance to cefixime (99%), colistin (82%), and ciprofloxacin (76%). In conclusion, carbapenems were the most effective antibiotics against ESBl-producingE. coliin urinary tract infection in North of Iran. The most prevalent gene is the TEM-type, but the other resistant genes and their antimicrobial resistance are on the rise.


2021 ◽  
Vol 38 (3) ◽  
pp. 301-304
Author(s):  
Zahra SADEGHI DEYLAMDEH ◽  
Abolfazl JAFARI SALES

Beta-lactamases are the most common cause of bacterial resistance to beta-lactam antibiotics. AmpC-type beta-lactamases hydrolyze cephalosporins, penicillins, and cephamycins. Therefore, the study aims was to determine antibiotic resistance and to investigate the presence of AmpC beta-lactamase gene in clinical strains of Escherichia coli isolated from hospitalized patients in Tabriz. In this cross-sectional descriptive study, 289 E. coli specimens were collected from clinical specimens. Disk diffusion method and combined disk method were used to determine the phenotype of extended spectrum β-Lactamase producing (ESBLs) strains. Then PCR was used to evaluate the presence of AmpC (FOX) beta-lactamase gene in the strains confirmed in phenotypic tests. Antibiotic resistance was also determined using disk diffusion by the Kibry-Bauer method. A total of 121 isolates were identified as generators of beta-lactamase genes. 72 (59.5 %) isolates producing ESBL and 49 (40.5 %) isolates were identified as AmpC generators. In the PCR test, 31 isolates contained the FOX gene. The highest resistance was related to the antibiotics amoxicillin (76.12%), ceftazidime (70.24%) and nalidixic acid (65.05%). The results indicate an increase in the prevalence of beta-lactamase genes and increased resistance to beta-lactam antibiotics, which can be the result of improper use of antibiotics and not using antibiotic susceptibility tests before starting treatment. Also, using phenotypic and molecular diagnostic methods such as PCR together can be very useful.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ruslan Tsivkovski ◽  
Maxim Totrov ◽  
Olga Lomovskaya

ABSTRACT QPX7728 is a new ultrabroad-spectrum inhibitor of serine and metallo-beta-lactamases (MBLs) from a class of cyclic boronates that gave rise to vaborbactam. The spectrum and mechanism of beta-lactamase inhibition by QPX7728 were assessed using purified enzymes from all molecular classes. QPX7728 inhibits class A extended-spectrum beta-lactamases (ESBLs) (50% inhibitory concentration [IC50] range, 1 to 3 nM) and carbapenemases such as KPC (IC50, 2.9 ± 0.4 nM) as well as class C P99 (IC50 of 22 ± 8 nM) with a potency that is comparable to or higher than recently FDA-approved beta-lactamase inhibitors (BLIs) avibactam, relebactam, and vaborbactam. Unlike those other BLIs, QPX7728 is also a potent inhibitor of class D carbapenemases such as OXA-48 from Enterobacteriaceae and OXA enzymes from Acinetobacter baumannii (OXA-23/24/58, IC50 range, 1 to 2 nM) as well as MBLs such as NDM-1 (IC50, 55 ± 25 nM), VIM-1 (IC50, 14 ± 4 nM), and IMP-1 (IC50, 610 ± 70 nM). Inhibition of serine enzymes by QPX7728 is associated with progressive inactivation with a high-efficiency k2/K ranging from 6.3 × 104 (for P99) to 9.9 × 105 M−1 s−1 (for OXA-23). This inhibition is reversible with variable stability of the QPX7728-beta-lactamase complexes with target residence time ranging from minutes to several hours: 5 to 20 min for OXA carbapenemases from A. baumannii, ∼50 min for OXA-48, and 2 to 3 h for KPC and CTX-M-15. QPX7728 inhibited all tested serine enzymes at a 1:1 molar ratio. Metallo-beta-lactamases NDM, VIM, and IMP were inhibited by a competitive mechanism with fast-on–fast-off kinetics, with Kis of 7.5 ± 2.1 nM, 32 ± 14 nM, and 240 ± 30 nM for VIM-1, NDM-1, and IMP-1, respectively. QPX7728’s ultrabroad spectrum of BLI inhibition combined with its high potency enables combinations with multiple different beta-lactam antibiotics.


2017 ◽  
Vol 68 (6) ◽  
pp. 1225-1228
Author(s):  
Carmen Axente ◽  
Delia Muntean ◽  
Luminita Baditoiu ◽  
Roxana Moldovan ◽  
Elena Hogea ◽  
...  

Intensive care units (ICUs) are often referred to as the epicentre of infection diseases in a hospital. Many studies highlighted the importance of using local antimicrobial resistance data, to guide empirical antibiotic therapy. As a consequence, the present study is particularly important, especially in the current context, when we are witnessing an ascending trend of antimicrobial resistance. Beta-lactams are the most frequently used class of antibiotics for treating patients infected with various germs. The aim of this study is to analyse the modalities by which microorganisms become resistant to antibiotics of this class, in an intensive care unit of a Romanian university hospital. During the period between January, the 1st 2012 and December the 31st 2013, a prospective study was conducted in the largest ICU from the Western part of Romania. Various resistance mechanisms to beta-lactam antibiotics were detected. Among these, there is great concern regarding the high number of extended-spectrum beta-lactamase producing microorganisms, as in most cases they determine the use of carbapenems, thus increasing the risk of occurrence and dissemination of carbapenemase-producing bacteria.


1982 ◽  
Vol 152 (2) ◽  
pp. 567-571
Author(s):  
T Sawai ◽  
M Kanno ◽  
K Tsukamoto

Eight kinds of beta-lactamases produced by gram-negative bacteria were characterized by the following properties: molecular weight, isoelectric point, pH optimum, molecular activity, immunochemical reactivity, and kinetic parameters with respect to twelve kinds of common beta-lactam antibiotics. These beta-lactamases included two types of penicillinases mediated by R plasmids and six kinds of species-specific cephalosporinases. To determine a reliable value of the kinetic parameter, Km, we introduced a continuous and acidimetric assay method of beta-lactamase activity with a pH stat.


Sign in / Sign up

Export Citation Format

Share Document