Molecular organization of the microsomal oxidative system: a new connotation for an old term

Author(s):  
D. R. Davydov
2019 ◽  
Vol 5 (10) ◽  
pp. eaax9501 ◽  
Author(s):  
Cong-long Yuan ◽  
Wenbin Huang ◽  
Zhi-gang Zheng ◽  
Binghui Liu ◽  
Hari Krishna Bisoyi ◽  
...  

Dynamic modulation of soft helix in terms of the molecular organization, handedness, and pitch length could result in a sophisticated control over its functions, opening numerous possibilities toward the exploration of previously unidentified applications. Here, we report a dynamic and reversible transformation of a soft helical superstructure among the helicoidal (molecules orthogonal to helical axis), heliconical (molecules oblique to the helical axis, i.e., oblique helicoidal), and their inverse helices, together with a tunability on the helical pitch, by combining electrical and optical manipulations. This multistate transformation depends on a matching of the temperature, the strength of external stimuli, and the bend and twist elastic effects of the system. A laser emission with tunable wavelength and polarization, and prescribed micropatterns formed by any aforementioned architectures were achieved.


2015 ◽  
Vol 61 (2) ◽  
pp. 176-187 ◽  
Author(s):  
D.R. Davydov

The central role that cytochromes P450 play in the metabolism of drugs and other xenobiotics makes these enzymes a major subject for studies of drug disposition, adverse drug effects and drug-drug interactions. Although there has been tremendous success in delineating P450 mechanisms, the concept of the drug-metabolizing ensemble as a functionally integrated system remains undeveloped. However, eukaryotic cells typically possess a multitude of different P450 enzymes that are co-localized in the membrane of endoplasmic reticulum (ER) and interact with each other with the formation of dynamic heteromeric complexes (mixed oligomers). Appreciation of the importance of developing an integral, systems approach to the ensemble of cytochromes P450 as an integral system inspired growing interest of researchers to the molecular organization of microsomal monooxygenase, which remained in the focus of research of academician Archakov for over 40 years. Fundamental studies carried out under his guidance have an important impact on our current concepts in this area. Further exploration of the molecular organization of the system of microsomal monooxygenase as an integral multienzyme and multifunctional system will have an essential impact on our understanding of the key factors that determine the changes in human drug metabolism and other P450-related functions in development, aging, and disease, as well as under influence of drugs, food ingredients, and environmental contaminants.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Electron microscopy and diffraction of biological materials in the hydrated state requires the construction of a chamber in which the water vapor pressure can be maintained at saturation for a given specimen temperature, while minimally affecting the normal vacuum of the remainder of the microscope column. Initial studies with chambers closed by thin membrane windows showed that at the film thicknesses required for electron diffraction at 100 KV the window failure rate was too high to give a reliable system. A single stage, differentially pumped specimen hydration chamber was constructed, consisting of two apertures (70-100μ), which eliminated the necessity of thin membrane windows. This system was used to obtain electron diffraction and electron microscopy of water droplets and thin water films. However, a period of dehydration occurred during initial pumping of the microscope column. Although rehydration occurred within five minutes, biological materials were irreversibly damaged. Another limitation of this system was that the specimen grid was clamped between the apertures, thus limiting the yield of view to the aperture opening.


Author(s):  
Robert M. Glaeser ◽  
David W. Deamer

In the investigation of the molecular organization of cell membranes it is often supposed that lipid molecules are arranged in a bimolecular film. X-ray diffraction data obtained in a direction perpendicular to the plane of suitably layered membrane systems have generally been interpreted in accord with such a model of the membrane structure. The present studies were begun in order to determine whether selected area electron diffraction would provide a tool of sufficient sensitivity to permit investigation of the degree of intermolecular order within lipid films. The ultimate objective would then be to apply the method to single fragments of cell membrane material in order to obtain data complementary to the transverse data obtainable by x-ray diffraction.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Author(s):  
G. Zampighi ◽  
M. Kreman

The plasma membranes of most animal cells contain transport proteins which function to provide passageways for the transported species across essentially impermeable lipid bilayers. The channel is a passive transport system which allows the movement of ions and low molecular weight molecules along their concentration gradients. The pump is an active transport system and can translocate cations against their natural concentration gradients. The actions and interplay of these two kinds of transport proteins control crucial cell functions such as active transport, excitability and cell communication. In this paper, we will describe and compare several features of the molecular organization of pumps and channels. As an example of an active transport system, we will discuss the structure of the sodium and potassium ion-activated triphosphatase [(Na+ +K+)-ATPase] and as an example of a passive transport system, the communicating channel of gap junctions and lens junctions.


Author(s):  
V. Castano ◽  
W. Krakow

In non-UHV microscope environments atomic surface structure has been observed for flat-on for various orientations of Au thin films and edge-on for columns of atoms in small particles. The problem of oxidation of surfaces has only recently been reported from the point of view of high resolution microscopy revealing surface reconstructions for the Ag2O system. A natural extension of these initial oxidation studies is to explore other materials areas which are technologically more significant such as that of Cu2O, which will now be described.


Author(s):  
Rudolf Oldenbourg

The recent renaissance of the light microsope is fueled in part by technological advances in components on the periphery of the microscope, such as the laser as illumination source, electronic image recording (video), computer assisted image analysis and the biochemistry of fluorescent dyes for labeling specimens. After great progress in these peripheral parts, it seems timely to examine the optics itself and ask how progress in the periphery facilitates the use of new optical components and of new optical designs inside the microscope. Some results of this fruitful reflection are presented in this symposium.We have considered the polarized light microscope, and developed a design that replaces the traditional compensator, typically a birefringent crystal plate, with a precision universal compensator made of two liquid crystal variable retarders. A video camera and digital image processing system provide fast measurements of specimen anisotropy (retardance magnitude and azimuth) at ALL POINTS of the image forming the field of view. The images document fine structural and molecular organization within a thin optical section of the specimen.


Author(s):  
Yimei Zhu ◽  
Masaki Suenaga ◽  
R. L. Sabatini ◽  
Youwen Xu

The (110) twin structure of YBa2Cu3O7 superconductor oxide, which is formed to reduce the strain energy of the tetragonal to orthorhombic phase transformation by alternating the a-b crystallographic axis across the boundary, was extensively investigated. Up to now the structure of the twin boundary still remained unclear. In order to gain insight into the nature of the twin boundary in Y-Ba-Cu-O system, a study using electron diffraction techniques including optical and computed diffractograms, as well as high resolution structure imaging techniques with corresponding computer simulation and processing was initiated.Bulk samples of Y-Ba-Cu-O oxide were prepared as described elsewhere. TEM specimens were produced by crushing bulk samples into a fine powder, dispersing the powder in acetone, and suspending the fine particles on a holey carbon grid. The electron microscopy during this study was performed on both a JEOL 2000EX and 2000FX electron microscopes operated at 200 kV.


1976 ◽  
Vol 7 (4) ◽  
pp. 207-219 ◽  
Author(s):  
Constance P. DesRoches

A statistical review provides analysis of four years of speech therapy services of a suburban school system which can be used for comparison with other school system programs. Included are data on the percentages of the school population enrolled in therapy, the categories of disabilities and the number of children in each category, the sex and grade-level distribution of those in therapy, and shifts in case-load selection. Factors affecting changes in case-load profiles are identified and discussed.


Sign in / Sign up

Export Citation Format

Share Document