scholarly journals SAT0246 TARGETING JAK/STAT PATHWAY IN TAKAYASU’S ARTERITIS

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1066.1-1066
Author(s):  
P. Régnier ◽  
A. Le Joncour ◽  
A. Maciejewski-Duval ◽  
A. C. Desbois ◽  
C. Comarmond ◽  
...  

Background:Takayasu’s arteritis (TAK) is a large vessel vasculitis (LVV) in which the aorta and its main branches are greatly inflamed, leading to wall thickening, fibrosis, stenosis and to artery occlusion(1). The disease is more common in women mostly between 20 and 30 years old. TAK has a high morbidity rate: 50% of patients will relapse within 10 years after diagnosis(2, 3). This inflammation is essentially mediated by infiltration with macrophages and pro-inflammatory Th1/Th17 effector subsets(4–8). But the mechanisms behind these phenomena are essentially unknown. TAK is mainly treated with non-specific steroids(1) which are associated with potential side effects when used for a long-time course.Objectives:Our work aims to explore the involvement of JAK/STAT signaling pathway and its downstream biological cascades in pro-inflammatory T cells differentiation and disease activity of TAK. Plus, our work allows to consider targeting the JAK/STAT pathway in TAK using JAK inhibitors (JAKinibs).Methods:We analyzed transcriptome of FACS-sorted CD4+ and CD8+ T cells from healthy donors (HD) and TAK, using differential gene, pathway and network analysis. Then, we assessed in vitro and in vivo effects of JAKinibs in TAK by flow cytometry (FC).Results:Transcriptome analysis showed hundreds of significantly dysregulated genes/pathways for CD4+ and CD8+ samples between HD and TAK. Among these, we noticed in TAK a great enrichment for pathways linked to type I and II interferons (IFN), JAK/STAT and cytokines/chemokines-related signaling. We confirmed by RT-qPCR the upregulation of a type I IFN-specific gene signature in TAK T cells as compared to HD. Using genes coming from the previous pathways, we constructed networks connecting them according to their respective protein interactions. This representation showed for both CD4+ and CD8+ T cells that JAK and STAT genes were densely connected, thus representing core genes/proteins in the TAK physiopathology.We then performed in vitro cell cultures of PBMCs from HD or TAK supplemented with Ruxolitinib (JAK1/2 inhibitor) or PBS. We observed by FC that JAKinibs significantly induced in TAK CD4+ and CD8+ T cells reduction of CD25 expression, decrease of Th1/Th17 pro-inflammatory cells and increase of Tregs.Next, we followed by FC 3 TAK (refractory to conventional treatments) treated with JAKinibs. We also observed in their PBMCs a reduction of CD25 expression by CD4+ T cells, a decrease of Th1 and Th17 cells and an increase of Tregs, accompanied by an increase of the Tregs/Teffs ratio. JAKinibs also decreased C-Reactive Protein level, NIH score and co-administered steroids doses (present before JAKinibs introduction) in these 3 in vivo-treated TAK.Conclusion:JAK/STAT signaling pathway is critical in the pathogenesis of TAK and JAKinibs may be promising in its treatment.References:[1]F. Numano, M. Okawara, H. Inomata, Y. Kobayashi, The Lancet. 356, 1023–1025 (2000).[2]C. Comarmond et al., Circulation. 136, 1114–1122 (2017).[3]A. Mirouse et al., J. Autoimmun. 96, 35–39 (2019).[4]C. M. Weyand, J. J. Goronzy, Nat. Rev. Rheumatol. 9, 731–740 (2013).[5]C. M. Weyand et al., Clin. Immunol. 206, 33–41 (2019).[6]D. Saadoun et al., Arthritis Rheumatol. 67, 1353–1360 (2015).[7]T. Mirault, H. Guillet, E. Messas, Presse Médicale. 46, e189–e196 (2017).[8]D. P. Misra, S. Chaurasia, R. Misra, Autoimmune Dis. 2016, 1–8 (2016).Disclosure of Interests:Paul Régnier: None declared, Alexandre Le Joncour: None declared, Anna Maciejewski-Duval: None declared, Anne-Claire DESBOIS: None declared, Cloé Comarmond: None declared, Michelle Rosenzwajg: None declared, David Klatzmann Consultant of: ILTOO Pharma, Patrice cacoub: None declared, David Saadoun: None declared

2020 ◽  
Vol 79 (7) ◽  
pp. 951-959 ◽  
Author(s):  
Paul Régnier ◽  
Alexandre Le Joncour ◽  
Anna Maciejewski-Duval ◽  
Anne-Claire Desbois ◽  
Cloé Comarmond ◽  
...  

ObjectiveTakayasu’s arteritis (TAK) is a large vessel vasculitis with important infiltration of proinflammatory T cells in the aorta and its main branches, but its aetiology is still unknown. Our work aims to explore the involvement of Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signalling pathway in proinflammatory T cells differentiation and disease activity of TAK.MethodsWe analysed transcriptome and interferons gene signatures of fluorescence-activated cell sorting (FACS-sorted) CD4+ and CD8+ T cells from healthy donors (HD) and in 25 TAK (median age of 37.6 years including 21 active TAK with National Institutes of Health (NIH) score >1). Then we tested, in vitro and in vivo, the effects of JAK inhibitors (JAKinibs) in TAK.ResultsTranscriptome analysis showed 248 and 432 significantly dysregulated genes for CD4+ and CD8+ samples between HD and TAK, respectively. Among dysregulated genes, we highlighted a great enrichment for pathways linked to type I and type II interferons, JAK/STAT and cytokines/chemokines-related signalling in TAK. We confirmed by Real Time Reverse Transcription Polymerase Chain Reaction (RT-qPCR) the upregulation of type I interferons gene signature in TAK as compared with HD. JAKinibs induced both in vitro and in vivo a significant reduction of CD25 expression by CD4+ and CD8+ T cells, a significant decrease of type 1 helper T cells (Th1) and Th17 cells and an increase of Tregs cells in TAK. JAKinibs also decreased C reactive protein level, NIH score and corticosteroid dose in TAK patients.ConclusionsJAK/STAT signalling pathway is critical in the pathogenesis of TAK and JAKinibs may be a promising therapy.


Blood ◽  
2020 ◽  
Vol 136 (6) ◽  
pp. 657-668 ◽  
Author(s):  
Lauren K. Meyer ◽  
Katherine C. Verbist ◽  
Sabrin Albeituni ◽  
Brooks P. Scull ◽  
Rachel C. Bassett ◽  
...  

Abstract Cytokine storm syndromes (CSS) are severe hyperinflammatory conditions characterized by excessive immune system activation leading to organ damage and death. Hemophagocytic lymphohistiocytosis (HLH), a disease often associated with inherited defects in cell-mediated cytotoxicity, serves as a prototypical CSS for which the 5-year survival is only 60%. Frontline therapy for HLH consists of the glucocorticoid dexamethasone (DEX) and the chemotherapeutic agent etoposide. Many patients, however, are refractory to this treatment or relapse after an initial response. Notably, many cytokines that are elevated in HLH activate the JAK/STAT pathway, and the JAK1/2 inhibitor ruxolitinib (RUX) has shown efficacy in murine HLH models and humans with refractory disease. We recently reported that cytokine-induced JAK/STAT signaling mediates DEX resistance in T cell acute lymphoblastic leukemia (T-ALL) cells, and that this could be effectively reversed by RUX. On the basis of these findings, we hypothesized that cytokine-mediated JAK/STAT signaling might similarly contribute to DEX resistance in HLH, and that RUX treatment would overcome this phenomenon. Using ex vivo assays, a murine model of HLH, and primary patient samples, we demonstrate that the hypercytokinemia of HLH reduces the apoptotic potential of CD8 T cells leading to relative DEX resistance. Upon exposure to RUX, this apoptotic potential is restored, thereby sensitizing CD8 T cells to DEX-induced apoptosis in vitro and significantly reducing tissue immunopathology and HLH disease manifestations in vivo. Our findings provide rationale for combining DEX and RUX to enhance the lymphotoxic effects of DEX and thus improve the outcomes for patients with HLH and related CSS.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S141-S141
Author(s):  
B Liu ◽  
M Spalinger ◽  
L G Perez ◽  
A Machicote ◽  
N Gagliani ◽  
...  

Abstract Background Inflammatory Bowel Disease (IBD) is characterized by an overwhelming gut inflammation, where CD4+ effector T cells are main mediators of the inflammatory response. Tofacitinib, a small molecular drug recently used in IBD patients, blocks the JAK/STAT signaling pathway necessary for CD4+ effector T-cell activation. However, clinical data show that a percentage of patients do not respond to the treatment. Our main goal is to identify biomarkers predicting the response of patients to tofacitinib. Methods Tofacitinib efficacy was studied in vivo in wild type (WT) and T-cell-specific PTPN2 deficient mice (CD4-Cre;Ptpn2 floxed) in which the JAK/STAT signaling pathway is over activated. WT and PTPN2 deficient mice were gavaged with tofacitinib (50mg/kg, twice daily) or vehicle. Acute DSS-colitis was induced. Colitis development was evaluated by weight loss, colonoscopy and histology. CD4+ T cells were isolated from the colon and analyzed by flow cytometry. To study the effect of tofacitinib on T-cell differentiation, we isolated naïve T cells from mouse spleen and polarized them in vitro to different T-cell subsets with or without tofacitinib. CD4+ T cells differentiation and cytokine production were analyzed by flow cytometry. To evaluate the influence of tofacitinib on human CD4+ T cells, human peripheral blood mononuclear cells (PBMCs) from healthy donors and IBD patients were stimulated in presence of tofacitinib, and analyzed by flow cytometry. Results While no protective effect was found after tofacitinib treatment in WT mice, PTPN2 deficient mice were protected from colitis based on less weight loss, lower endoscopic and histological scores. The expression of pro-inflammatory cytokines such as IL-17 and IFN-γ by colonic CD4+ T cells was also decreased by tofacitinib. Consistent with the in vivo observations, in vitro experiments revealed a strong impact of tofacitinib on CD4+ T-cells cytokine production. In PBMCs from IBD patients, IFN-γ and TNF-α expression was strongly impacted. In contrast, in healthy donors, IL-10 was the most impacted cytokine. Finally, tofacitinib decreased the in vitro differentiation of Th1, Th2, Th17, Th22, Treg and Tr1. Conclusion In the T-cell-specific PTPN2 deficient mice, tofacitinib exerts a protective effect after DSS-induced colitis. In line with the in vivo findings, in vitro experiments show that tofacitinib has a strong impact on pro-inflammatory cytokine production, especially in the IBD patients. Taken together, these data suggest that tofacitinib might be suitable primarily for IBD patients where the JAK/STAT signaling pathway is over activated.


2021 ◽  
Vol 218 (9) ◽  
Author(s):  
Keitaro Fukuda ◽  
Ken Okamura ◽  
Rebecca L. Riding ◽  
Xueli Fan ◽  
Khashayar Afshari ◽  
...  

The STING and absent in melanoma 2 (AIM2) pathways are activated by the presence of cytosolic DNA, and STING agonists enhance immunotherapeutic responses. Here, we show that dendritic cell (DC) expression of AIM2 within human melanoma correlates with poor prognosis and, in contrast to STING, AIM2 exerts an immunosuppressive effect within the melanoma microenvironment. Vaccination with AIM2-deficient DCs improves the efficacy of both adoptive T cell therapy and anti–PD-1 immunotherapy for “cold tumors,” which exhibit poor therapeutic responses. This effect did not depend on prolonged survival of vaccinated DCs, but on tumor-derived DNA that activates STING-dependent type I IFN secretion and subsequent production of CXCL10 to recruit CD8+ T cells. Additionally, loss of AIM2-dependent IL-1β and IL-18 processing enhanced the treatment response further by limiting the recruitment of regulatory T cells. Finally, AIM2 siRNA-treated mouse DCs in vivo and human DCs in vitro enhanced similar anti-tumor immune responses. Thus, targeting AIM2 in tumor-infiltrating DCs is a promising new treatment strategy for melanoma.


2002 ◽  
Vol 197 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Melanie S. Vacchio ◽  
Richard J. Hodes

Whereas ligation of CD28 is known to provide a critical costimulatory signal for activation of CD4 T cells, the requirement for CD28 as a costimulatory signal during activation of CD8 cells is less well defined. Even less is known about the involvement of CD28 signals during peripheral tolerance induction in CD8 T cells. In this study, comparison of T cell responses from CD28-deficient and CD28 wild-type H-Y–specific T cell receptor transgenic mice reveals that CD8 cells can proliferate, secrete cytokines, and generate cytotoxic T lymphocytes efficiently in the absence of CD28 costimulation in vitro. Surprisingly, using pregnancy as a model to study the H-Y–specific response of maternal T cells in the presence or absence of CD28 costimulation in vivo, it was found that peripheral tolerance does not occur in CD28KO pregnants in contrast to the partial clonal deletion and hyporesponsiveness of remaining T cells observed in CD28WT pregnants. These data demonstrate for the first time that CD28 is critical for tolerance induction of CD8 T cells, contrasting markedly with CD28 independence of in vitro activation, and suggest that the role of CD28/B7 interactions in peripheral tolerance of CD8 T cells may differ significantly from that of CD4 T cells.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A3.2-A4
Author(s):  
J Grün ◽  
I Piseddu ◽  
C Perleberg ◽  
N Röhrle ◽  
S Endres ◽  
...  

BackgroundUnmethylated CpG-DNA is a potent ligand for the endosomal Toll-like-receptor-9, important for the immune activation to pathogen-associated molecules.1 CpG and other TLR-ligands show effective immunotherapeutic capacities in cancer treatment by inducing an antitumorigenic immunity.2 They are able to reduce tumor progression by reduction of intratumoral secretion of the immunoregulating chemokine CCL223 and subsequent recruitment of immunosuppressive regulatory T cells (Treg), which express CCR4 the only so far known receptor for CCL22.4 Our recent work has shown that CCL22 secretion by dendritic cells (DC) in the lymph node, mediates tolerance by inducing DC-Treg contacts.5 Indeed, in the absence of CCL22, immune responses to vaccination were stronger and resulted in tumor rejection.6 Therefore, we are aiming to investigate the effects of TLR-ligands on systemic CCL22 levels, elucidating all involved mechanisms to identify new targets for cancer immunotherapy.Materials and MethodsT, B and CD11c+ DCs of wildtype (wt) and RAG1-/- mice were isolated from splenocytes by magnetic-activated cell sorting for in vitro assays. Different co-cultures were incubated with CpG and GM-CSF, known as an CCL22 inducer.5 For in vivo experiments, wt mice were treated with CpG, R484 or poly(I:C) alone and in combination with GM-CSF. CCL22-levels in a number of organs were analyzed.ResultsAnalyzing the different immune cell compartments in vitro, we found that DCs in whole splenocytes secrete CCL22 during culture while DC cultured alone showed no CCL22 secretion. When treated with CpG, CCL22-levels were reduced in splenocytes, while it was induced in DC culture alone. The same results were seen when RAG splenocytes, that lack functional B and T cells, were cultured with CpG. CpG treated B cells were able to suppress CCL22 secretion by DC unlike T cells alone. Co-cultures of T and B cells treated with CpG, however, induced the strongest CCL22 suppression in DC. In vivo, we could show that all TLR ligands tested reduced CCL22 in a number of organs significantly. Furthermore, CpG showed the strongest suppression of CCL22 even in the presence of the CCL22 inducer GM-CSF.5ConclusionsWe could show that B cells with T cells mediate CCL22 suppression by TLR ligands. The fact that CpG was able to reduce CCL22 levels even in the presence of the inducer GM-CSF demonstrates the potent CCL22 suppressive capacity of TLR ligands.ReferencesO’Neill LA, et al. The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60.Rothenfusser S, et al. Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 2003;5(2):98–106.Wang S, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016;113(46): E7240–E7249.Rapp M, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019;216(5):1170–1181.Piseddu I, et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J Immunol 2020;205(8):2056–2065.Anz D, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 2015;75(21):4483–93.Disclosure InformationJ. Grün: None. I. Piseddu: None. C. Perleberg: None. N. Röhrle: None. S. Endres: None. D. Anz: None.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Anna Cole ◽  
Guillermo Rangel RIvera ◽  
Aubrey Smith ◽  
Megan Wyatt ◽  
Brandon Ware ◽  
...  

BackgroundIL-21 enhances the anti-tumor capacity of adoptively transferred CD8+ T cells, while IL-2 and IL-15 impair T cell immunity by driving their expansion to a more differentiated status. Yet, these cytokines can act on many different immune cells. Given the potency of IL-21, we tested if this cytokine directly augments T cells or rather if it enhances other immune cells in the culture that indirectly improves T cell therapy.MethodsTo test this question, splenocytes from pmel-1 transgenic mice were used, as all CD8+ T cells express a transgenic TCR specific for tumor-antigen gp10025–33 overexpressed on melanoma. We then peptide activated naïve CD8+ T cells enriched or not from the spleen of pmel-1 mice and expanded them in the presence of IL-21 or IL-2 (10 ng/mL) for four days. Expanded pmel-1 from these various cultures were then restimulated with irradiated splenocytes pulsed with gp10025–33 and grown an additional seven days with IL-2 (10 ng/mL), irrespective of their initial cytokine condition. The in vitro memory phenotype, exhaustion profile, and cytokine secretion of these cultures were then assayed. Furthermore, mice bearing B16KVP melanoma tumors were infused with pmel-1 T cells expanded via these various approaches and compared for their relative capacity to engraft, persist, and regress tumor in vivo.ResultsInterestingly, we discovered that IL-21-treated T cells generated from bulk splenocytes are phenotypically and functionally distinct from IL-21-treated isolated T cells. Upon restimulation, IL-21-treated T cells from bulk splenocytes exhibited an exhausted phenotype that was like anergic IL-2-treated T cells. Moreover, few cells expressed CD62L but expressed heightened markers of suppression, including TIM3, PD-1, and EOMES. Moreover, they produced more effector molecules, including granzyme B and IFN-gamma. In vivo IL-21-treated T cells expanded from bulk splenocytes engrafted and persisted poorly, in turn mediating suboptimal regression of melanoma. Conversely, IL-21 dramatically bolstered the engraftment and antitumor activity of T cells only if they were first isolated from the spleen prior to their expansion and infusion into the animal.ConclusionsCollectively, our data shows that IL-21 may improve ACT therapy best when used directly on antitumor CD8+ T cells. Further studies will illuminate the mechanism behind this striking difference and determine whether other cell subsets reactive to IL-21 cause T cell dysfunction and/or reduced bioavailability. These findings are important for defining the best culture conditions in which to use IL-21 for ACT.AcknowledgementsWe would like to acknowledge Emory University, The Winship Cancer Institute, and the Pediatrics/Winship Flow Cytometry Core.Ethics ApprovalAll animal procedures were approved by the Institutional Animal Care and Use Committee of Emory University, protocol number 201900225.


Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maaria Palmroth ◽  
Krista Kuuliala ◽  
Ritva Peltomaa ◽  
Anniina Virtanen ◽  
Antti Kuuliala ◽  
...  

ObjectiveCurrent knowledge on the actions of tofacitinib on cytokine signaling pathways in rheumatoid arthritis (RA) is based on in vitro studies. Our study is the first to examine the effects of tofacitinib treatment on Janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathways in vivo in patients with RA.MethodsSixteen patients with active RA, despite treatment with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), received tofacitinib 5 mg twice daily for three months. Levels of constitutive and cytokine-induced phosphorylated STATs in peripheral blood monocytes, T cells and B cells were measured by flow cytometry at baseline and three-month visits. mRNA expression of JAKs, STATs and suppressors of cytokine signaling (SOCS) were measured from peripheral blood mononuclear cells (PBMCs) by quantitative PCR. Association of baseline signaling profile with treatment response was also investigated.ResultsTofacitinib, in csDMARDs background, decreased median disease activity score (DAS28) from 4.4 to 2.6 (p < 0.001). Tofacitinib treatment significantly decreased cytokine-induced phosphorylation of all JAK-STAT pathways studied. However, the magnitude of the inhibitory effect depended on the cytokine and cell type studied, varying from 10% to 73% inhibition following 3-month treatment with tofacitinib. In general, strongest inhibition by tofacitinib was observed with STAT phosphorylations induced by cytokines signaling through the common-γ-chain cytokine receptor in T cells, while lowest inhibition was demonstrated for IL-10 -induced STAT3 phosphorylation in monocytes. Constitutive STAT1, STAT3, STAT4 and STAT5 phosphorylation in monocytes and/or T cells was also downregulated by tofacitinib. Tofacitinib treatment downregulated the expression of several JAK-STAT pathway components in PBMCs, SOCSs showing the strongest downregulation. Baseline STAT phosphorylation levels in T cells and monocytes and SOCS3 expression in PBMCs correlated with treatment response.ConclusionsTofacitinib suppresses multiple JAK-STAT pathways in cytokine and cell population specific manner in RA patients in vivo. Besides directly inhibiting JAK activation, tofacitinib downregulates the expression of JAK-STAT pathway components. This may modulate the effects of tofacitinib on JAK-STAT pathway activation in vivo and explain some of the differential findings between the current study and previous in vitro studies. Finally, baseline immunological markers associate with the treatment response to tofacitinib.


Sign in / Sign up

Export Citation Format

Share Document