scholarly journals Could Virtual Reality play a role in the rehabilitation after COVID-19 infection?

2020 ◽  
Vol 6 (1) ◽  
pp. e000943
Author(s):  
Merlijn Smits ◽  
J Bart Staal ◽  
Harry van Goor

Post-COVID-19 patients, particularly those who needed high care, are expected to have high needs for physical, psychological and cognitive rehabilitation. Yet, the resources needed to provide rehabilitation treatment are expected to be inadequate because healthcare systems faced a shortage of high-quality treatment of these symptoms already before the COVID-19 crisis emerged in patients with comparable needs. In this viewpoint, we discuss the potential of Virtual Reality (VR) administering fast, tailor-made rehabilitation at a distance, and offering a solution for the impending surge of demand for rehabilitation after COVID-19. VR consists of a head-mounted display (HMD) that can bring the user by computer-generated visuals into an immersive, realistic multi-sensory environment. Several studies on VR show its potential for rehabilitation and suggest VR to be beneficial in post-COVID-19. The immersion of VR may increase therapy adherence and may distract the patient from experienced fatigue and anxiety. Barriers still have to be overcome to easily implement VR in healthcare. We argue that embedding VR in virtual care platforms would assist in overcoming these barriers and would stimulate the spread of VR therapy, both for post-COVID-19 patients in the present and possibly for other patients with similar rehabilitation needs in the future.

2019 ◽  
Vol 15 (12) ◽  
pp. 155014771989453 ◽  
Author(s):  
Hyun-Wook Kim ◽  
Sung-Hyun Yang

To support 360 virtual reality video streaming services, high resolutions of over 8K and network streaming technology that guarantees consistent quality of service are required. To this end, we propose 360 virtual reality video player technology and a streaming protocol based on MPEG Dynamic Adaptive Streaming over HTTP Spatial Representation Description to support the player. The player renders the downsized video as the base layer, which has a quarter of the resolution of the original video, and high-quality video tiles consisting of tiles obtained from the tiled-encoded high-quality video (over 16K resolution) as the enhanced layer. Furthermore, we implemented the system and conducted experiments to measure the network bandwidth for 16K video streaming and switching latency arising from changes in the viewport. From the results, we confirmed that the player has a switching latency of less than 1000 ms and a maximum network download bandwidth requirement of 100 Mbps.


2021 ◽  
Vol 10 (7) ◽  
pp. 1478
Author(s):  
Alexandra Voinescu ◽  
Jie Sui ◽  
Danaë Stanton Fraser

Neurological disorders are a leading cause of death and disability worldwide. Can virtual reality (VR) based intervention, a novel technology-driven change of paradigm in rehabilitation, reduce impairments, activity limitations, and participation restrictions? This question is directly addressed here for the first time using an umbrella review that assessed the effectiveness and quality of evidence of VR interventions in the physical and cognitive rehabilitation of patients with stroke, traumatic brain injury and cerebral palsy, identified factors that can enhance rehabilitation outcomes and addressed safety concerns. Forty-one meta-analyses were included. The data synthesis found mostly low- or very low-quality evidence that supports the effectiveness of VR interventions. Only a limited number of comparisons were rated as having moderate and high quality of evidence, but overall, results highlight potential benefits of VR for improving the ambulation function of children with cerebral palsy, mobility, balance, upper limb function, and body structure/function and activity of people with stroke, and upper limb function of people with acquired brain injury. Customization of VR systems is one important factor linked with improved outcomes. Most studies do not address safety concerns, as only nine reviews reported adverse effects. The results provide critical recommendations for the design and implementation of future VR programs, trials and systematic reviews, including the need for high quality randomized controlled trials to test principles and mechanisms, in primary studies and in meta-analyses, in order to formulate evidence-based guidelines for designing VR-based rehabilitation interventions.


Author(s):  
Ebru Kaya ◽  
Warren Lewin ◽  
David Frost ◽  
Breffni Hannon ◽  
Camilla Zimmermann

Background: During the COVID-19 pandemic, hospitals worldwide have reported large volumes of patients with refractory symptoms and a large number of deaths attributable to COVID-19. This has led to an increase in the demand for palliative care beyond what can be provided by most existing programs. We developed a scalable model to enable continued provision of high-quality palliative care during a pandemic for hospitals without a palliative care unit or existing dedicated palliative care beds. Methods: A COVID-19 consultation service working group (CWG) was convened with stakeholders from palliative care, emergency medicine, critical care, and general internal medicine. The CWG connected with local palliative care teams to ensure a coordinated response, and developed a model to ensure high-quality palliative care provision. Results: Our 3-step scalable model included: (1) consultant model enhanced by virtual care; (2) embedded model; and (3) cohorted end-of-life unit for COVID-19 positive patients. This approach was enabled through tools and resources to ensure specialist palliative care capacity and rapid upskilling of all clinicians to deliver basic palliative care. Enabling tools and resources included a triage tool for in-person versus virtual care, new medication order sets and guidelines to facilitate prescribing for common symptoms, and lead advance care planning and goals of care discussions. A redeployment plan of generalist physicians and psychiatrists was created to ensure seamless provision of serious illness care. Conclusion: This 3-step, scalable approach enables rapid upscaling of palliative care in collaboration with generalist physicians, and may be adapted for future pandemics or natural disasters.


2021 ◽  
Vol 11 (7) ◽  
pp. 3090
Author(s):  
Sangwook Yoo ◽  
Cheongho Lee ◽  
Seongah Chin

To experience a real soap bubble show, materials and tools are required, as are skilled performers who produce the show. However, in a virtual space where spatial and temporal constraints do not exist, bubble art can be performed without real materials and tools to give a sense of immersion. For this, the realistic expression of soap bubbles is an interesting topic for virtual reality (VR). However, the current performance of VR soap bubbles is not satisfying the high expectations of users. Therefore, in this study, we propose a physically based approach for reproducing the shape of the bubble by calculating the measured parameters required for bubble modeling and the physical motion of bubbles. In addition, we applied the change in the flow of the surface of the soap bubble measured in practice to the VR rendering. To improve users’ VR experience, we propose that they should experience a bubble show in a VR HMD (Head Mounted Display) environment.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4663
Author(s):  
Janaina Cavalcanti ◽  
Victor Valls ◽  
Manuel Contero ◽  
David Fonseca

An effective warning attracts attention, elicits knowledge, and enables compliance behavior. Game mechanics, which are directly linked to human desires, stand out as training, evaluation, and improvement tools. Immersive virtual reality (VR) facilitates training without risk to participants, evaluates the impact of an incorrect action/decision, and creates a smart training environment. The present study analyzes the user experience in a gamified virtual environment of risks using the HTC Vive head-mounted display. The game was developed in the Unreal game engine and consisted of a walk-through maze composed of evident dangers and different signaling variables while user action data were recorded. To demonstrate which aspects provide better interaction, experience, perception and memory, three different warning configurations (dynamic, static and smart) and two different levels of danger (low and high) were presented. To properly assess the impact of the experience, we conducted a survey about personality and knowledge before and after using the game. We proceeded with the qualitative approach by using questions in a bipolar laddering assessment that was compared with the recorded data during the game. The findings indicate that when users are engaged in VR, they tend to test the consequences of their actions rather than maintaining safety. The results also reveal that textual signal variables are not accessed when users are faced with the stress factor of time. Progress is needed in implementing new technologies for warnings and advance notifications to improve the evaluation of human behavior in virtual environments of high-risk surroundings.


Author(s):  
Yu-Sheng Yang ◽  
Alicia M. Koontz ◽  
Yu-Hsuan Hsiao ◽  
Cheng-Tang Pan ◽  
Jyh-Jong Chang

Maneuvering a wheelchair is an important necessity for the everyday life and social activities of people with a range of physical disabilities. However, in real life, wheelchair users face several common challenges: articulate steering, spatial relationships, and negotiating obstacles. Therefore, our research group has developed a head-mounted display (HMD)-based intuitive virtual reality (VR) stimulator for wheelchair propulsion. The aim of this study was to investigate the feasibility and efficacy of this VR stimulator for wheelchair propulsion performance. Twenty manual wheelchair users (16 men and 4 women) with spinal cord injuries ranging from T8 to L2 participated in this study. The differences in wheelchair propulsion kinematics between immersive and non-immersive VR environments were assessed using a 3D motion analysis system. Subjective data of the HMD-based intuitive VR stimulator were collected with a Presence Questionnaire and individual semi-structured interview at the end of the trial. Results indicated that propulsion performance was very similar in terms of start angle (p = 0.34), end angle (p = 0.46), stroke angle (p = 0.76), and shoulder movement (p = 0.66) between immersive and non-immersive VR environments. In the VR episode featuring an uphill journey, an increase in propulsion speed (p < 0.01) and cadence (p < 0.01) were found, as well as a greater trunk forward inclination (p = 0.01). Qualitative interviews showed that this VR simulator made an attractive, novel impression and therefore demonstrated the potential as a tool for stimulating training motivation. This HMD-based intuitive VR stimulator can be an effective resource to enhance wheelchair maneuverability experiences.


Author(s):  
Gordon Tao ◽  
Bernie Garrett ◽  
Tarnia Taverner ◽  
Elliott Cordingley ◽  
Crystal Sun

Abstract Background High quality head-mounted display based virtual reality (HMD-VR) has become widely available, spurring greater development of HMD-VR health games. As a behavior change approach, these applications use HMD-VR and game-based formats to support long-term engagement with therapeutic interventions. While the bulk of research to date has primarily focused on the therapeutic efficacy of particular HMD-VR health games, how developers and researchers incorporate best-practices in game design to achieve engaging experiences remains underexplored. This paper presents the findings of a narrative review exploring the trends and future directions of game design for HMD-VR health games. Methods We searched the literature on the intersection between HMD-VR, games, and health in databases including MEDLINE, Embase, CINAHL, PsycINFO, and Compendex. We identified articles describing HMD-VR games designed specifically as health applications from 2015 onwards in English. HMD-VR health games were charted and tabulated according to technology, health context, outcomes, and user engagement in game design. Findings We identified 29 HMD-VR health games from 2015 to 2020, with the majority addressing health contexts related to physical exercise, motor rehabilitation, and pain. These games typically involved obstacle-based challenges and extrinsic reward systems to engage clients in interventions related to physical functioning and pain. Less common were games emphasizing narrative experiences and non-physical exercise interventions. However, discourse regarding game design was diverse and often lacked sufficient detail. Game experience was evaluated using primarily ad-hoc questionnaires. User engagement in the development of HMD-VR health games primarily manifested as user studies. Conclusion HMD-VR health games are promising tools for engaging clients in highly immersive experiences designed to address diverse health contexts. However, more in-depth and structured attention to how HMD-VR health games are designed as game experiences is needed. Future development of HMD-VR health games may also benefit from greater involvement of end-users in participatory approaches.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 397
Author(s):  
Qimeng Zhang ◽  
Ji-Su Ban ◽  
Mingyu Kim ◽  
Hae Won Byun ◽  
Chang-Hun Kim

We propose a low-asymmetry interface to improve the presence of non-head-mounted-display (non-HMD) users in shared virtual reality (VR) experiences with HMD users. The low-asymmetry interface ensures that the HMD and non-HMD users’ perception of the VR environment is almost similar. That is, the point-of-view asymmetry and behavior asymmetry between HMD and non-HMD users are reduced. Our system comprises a portable mobile device as a visual display to provide a changing PoV for the non-HMD user and a walking simulator as an in-place walking detection sensor to enable the same level of realistic and unrestricted physical-walking-based locomotion for all users. Because this allows non-HMD users to experience the same level of visualization and free movement as HMD users, both of them can engage as the main actors in movement scenarios. Our user study revealed that the low-asymmetry interface enables non-HMD users to feel a presence similar to that of the HMD users when performing equivalent locomotion tasks in a virtual environment. Furthermore, our system can enable one HMD user and multiple non-HMD users to participate together in a virtual world; moreover, our experiments show that the non-HMD user satisfaction increases with the number of non-HMD participants owing to increased presence and enjoyment.


2021 ◽  
Vol 1 (1) ◽  
pp. 48-67
Author(s):  
Dylan Yamada-Rice

This article reports on one stage of a project that considered twenty 8–12-years-olds use of Virtual Reality (VR) for entertainment. The entire project considered this in relation to interaction and engagement, health and safety and how VR play fitted into children’s everyday home lives. The specific focus of this article is solely on children’s interaction and engagement with a range of VR content on both a low-end and high-end head mounted display (HMD). The data were analysed using novel multimodal methods that included stop-motion animation and graphic narratives to develop multimodal means for analysis within the context of VR. The data highlighted core design elements in VR content that promoted or inhibited children’s storytelling in virtual worlds. These are visual style, movement and sound which are described in relation to three core points of the user’s journey through the virtual story; (1) entering the virtual environment, (2) being in the virtual story world, and (3) affecting the story through interactive objects. The findings offer research-based design implications for the improvement of virtual content for children, specifically in relation to creating content that promotes creativity and storytelling, thereby extending the benefits that have previously been highlighted in the field of interactive storytelling with other digital media.


Sign in / Sign up

Export Citation Format

Share Document