scholarly journals Synergistic targeting and resistance to PARP inhibition in DNA damage repair-deficient pancreatic cancer

Gut ◽  
2020 ◽  
pp. gutjnl-2019-319970 ◽  
Author(s):  
Johann Gout ◽  
Lukas Perkhofer ◽  
Mareen Morawe ◽  
Frank Arnold ◽  
Michaela Ihle ◽  
...  

ObjectiveATM serine/threonine kinase (ATM) is the most frequently mutated DNA damage response gene, involved in homologous recombination (HR), in pancreatic ductal adenocarcinoma (PDAC).DesignCombinational synergy screening was performed to endeavour a genotype-tailored targeted therapy.ResultsSynergy was found on inhibition of PARP, ATR and DNA-PKcs (PAD) leading to synthetic lethality in ATM-deficient murine and human PDAC. Mechanistically, PAD-induced PARP trapping, replication fork stalling and mitosis defects leading to P53-mediated apoptosis. Most importantly, chemical inhibition of ATM sensitises human PDAC cells toward PAD with long-term tumour control in vivo. Finally, we anticipated and elucidated PARP inhibitor resistance within the ATM-null background via whole exome sequencing. Arising cells were aneuploid, underwent epithelial-mesenchymal-transition and acquired multidrug resistance (MDR) due to upregulation of drug transporters and a bypass within the DNA repair machinery. These functional observations were mirrored in copy number variations affecting a region on chromosome 5 comprising several of the upregulated MDR genes. Using these findings, we ultimately propose alternative strategies to overcome the resistance.ConclusionAnalysis of the molecular susceptibilities triggered by ATM deficiency in PDAC allow elaboration of an efficient mutation-specific combinational therapeutic approach that can be also implemented in a genotype-independent manner by ATM inhibition.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 948-948
Author(s):  
Miguel Quijada Álamo ◽  
María Hernández-Sánchez ◽  
José Luis Ordóñez ◽  
Verónica Alonso Pérez ◽  
Ana E. Rodriguez ◽  
...  

Abstract Chromosome 11q22.3 deletion (del(11q)) is one of the most common cytogenetic alterations in CLL and usually involves both ATM and BIRC3 genes. Concomitant mutations in ATM and/or BIRC3 in the remaining allele have been associated with poor survival. Despite the encouraging efficacy of novel agents targeting BCR and BCL2 pathways, del(11q) patients still have an inferior outcome and the development of resistance to these drugs has been increasingly reported. We therefore investigated the functional impact of del(11q) together with loss-of-function mutations in ATM and/or BIRC3 and whether CLLs harboring these alterations could benefit from novel combinatorial therapies. To address these questions, we used the CRISPR/Cas9 system to generate an isogenic CLL cell line to model del(11q) derived from HG3 cells by introducing two guide RNAs targeting the 11q22.1 and 11q23.3 regions. The presence of a monoallelic deletion (size ~17 Mb) was confirmed in 100% of the cells by FISH. Truncating mutations in ATM and/or BIRC3 were introduced in the remaining allele, generating HG3 del(11q) ATMKO, del(11q) BIRC3KO and del(11q) ATMKOBIRC3KO (three clones per condition). In addition, single ATMKO and BIRC3KO mutations, or the combination of both, were introduced into both HG3 and MEC1 CLL-derived cells (three clones per condition). Functional in vitro studies revealed that del(11q) BIRC3KO cells had increased growth rates compared to del(11q) BIRC3WT clones (P<0.01). Similar results were observed in HG3 and MEC1 BIRC3KO cells (P<0.01; P<0.05). Moreover, biallelic inactivation of BIRC3 in del(11q) cells resulted in cytoplasmic stabilization of NF-kB-inducing kinase (NIK), leading to higher nuclear NF-kB2 (p52) activation (P<0.01) as measured by ELISA. In parallel, we analyzed the DNA damage response (DDR) of these cells, and showed that del(11q) ATMKO cells displayed reduced pH2AX levels (P<0.001) and an accumulation of unrepaired double strand breaks (DSB) (P<0.001) after irradiation, as determined by comet assays. Consistently, in vivo subcutaneous xenografts showed that HG3 ATMKOBIRC3KO tumors presented proliferative advantage, higher p52 levels and greater genomic and mitotic instability than HG3WT tumors, indicating a more aggressive phenotype. We next assessed the response of these CRISPR/Cas9-edited CLL cell lines to therapy. Of note, only TP53KO clones (also generated by CRISPR/Cas9), and not del(11q) BIRC3KO cells, showed resistance to fludarabine (mean IC50 16.9 uM vs. 4.1 uM; mean apoptotic cells (5 uM) 5.5% vs. 22.5%; P<0.05). Moreover, del(11q) cells were slightly more resistant to ibrutinib (IBRU) treatment compared to WT cells (mean IC50 10 uM vs. 3.7 uM; P<0.05). Interestingly, exploiting the DDR deficiencies underlying del(11q) by targeting the single strand break repair pathway with the PARP inhibitor olaparib (OLA), del(11q) ATMKO cells were not able to proliferate even 12 days after treatment (3 uM), independently of the mutational status of BIRC3 (P<0.01). In vivo intravenous HG3-derived xenografts (N=20) showed that OLA (100 mg/kg) reduced hCD45+ cells in the peripheral blood (P<0.01) and significantly improved survival of del(11q) ATMKOBIRC3KO xenografted mice (P<0.01). Moreover, IBRU potentiated the effects of OLA in cell viability (72h) in all the del(11q) clones (combination indexes 0.69-0.85), leading to an increased necrotic cell death, as shown by annexin V/PI staining (P<0.001) and HMGB1 release. Remarkably, we found that IBRU caused downregulation of the DNA repair protein RAD51, leading to impaired RAD51 foci formation in DSB lesions (P<0.01). Consistently, IBRU (1 uM) reduced the homologous recombination (HR) repair efficiency in HG3 cells (P=0.001), as determined by an HR-reporter construct. This IBRU-dependent impairment of HR repair could explain the synergistic effects with OLA by synthetic lethality. In conclusion, we demonstrate that del(11q) CLL cells with biallelic inactivation of BIRC3 and ATM show enhanced proliferation through activation of the non-canonical NF-kB pathway, and accumulation of DNA damage contributing to genomic instability. We show that these defects on the DDR can be therapeutically targeted by synthetic lethal approaches using PARP inhibitors either alone or in combination with BCR inhibitors, providing a rationale for the study of this combination in relapsed del(11q) CLL patients. PI15/01471 SA085U16 JCyL-MQ FEHH-MH Disclosures García-Tuñón: Novartis: Research Funding. Wu:Neon Therapeutics: Equity Ownership.


2021 ◽  
Author(s):  
Xiangyu Zeng ◽  
Fei Zhao ◽  
Jake Kloeber ◽  
Rajashree Deshpande ◽  
Georges Mer ◽  
...  

Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Characterization of the recurrent genetic alterations in PDAC will yield improved understanding and therapies for this disease. Here, we report that PDAC patients with elevated expression of METTL16, one of the “writers” of RNA N6-methyladenosine (m6A) modification, may benefits from poly (ADP-ribose) polymerase (PARP) inhibitor treatment. Mechanistically, METTL16 interacts with MRE11 in an RNA-dependent manner; and, this interaction inhibits MRE11’s exonuclease activity in a methyltransferase-independent manner, thereby repressing DNA end resection. Upon DNA damage, ATM phosphorylates METTL16 at Ser419 within its C terminus, resulting in METTL16 conformational change and autoinhibition of its RNA binding. This dissociates the METTL16-RNA-MRE11 complex and releases inhibition of MRE11. Concordantly, PDAC cells with high METTL16 expression levels show increased sensitivity to PARP inhibitors, especially when combined with gemcitabine. Thus, our findings have revealed a role for METTL16 in homologous recombination repair and suggest that combination of PARP inhibitors with gemcitabine could be an effective treatment strategy for PDAC patients with high METTL16 expression.


2020 ◽  
Vol 15 (1) ◽  
pp. 12-23
Author(s):  
Eriko Osaki ◽  
Shinya Mizuno

Background: Poly-(ADP-Ribose) Polymerase (PARP) plays a central role in recovery from single-strand DNA (ssDNA) damage via base excision repair. When PARP activity is inhibited by a NAD+ mimetic analog, ssDNA is converted into a Double-Strand Break (DSB) during the S-phase in a cell cycle. However, the DSB site is repaired in a process of Homologous Recombination (HR) that is derived by genes such as BRCA1/2, PALB2, and RAD51. Under conditions of HR dysfunction, including mutations of BRCA1/2 (called BRCAness), PARP inhibitor (PARPi) induces “synthetic lethality” in BRCAness-specific cancer cells. Indeed, clinical trials using forms of PARPi that include olaparib, veliparib and rucaparib, have revealed that PARP inhibition produces a dramatic effect that actually arrests cancer progression. Its clinical efficiency is limited, however, due to the acquisition of PARPi resistance during long-term use of this inhibitor. Thus, it is important to elucidate the mechanisms of PARPi resistance. Methods: We searched the scientific literature published in PubMed, with a special focus on kinase phosphorylation that is involved in acquiring PARPi resistance. We also summarized the possible molecular events for recovering HR system, a key event for acquiring PARPi resistance. Results: CDK1 is a critical kinase for 5’-3’ DNA end resection, which is important for generating ssDNA for recruiting HR-priming factors. CDK12 is necessary for the transcription of HR-driver genes, such as BRCA1, BRCA2, RAD51 and ATR via the phosphorylation of RNA Pol-II. PLK-1 participates in driving HR via the phosphorylation of RAD51. The PI3K-AKT-mTOR signaling cascade is involved in BRCA1 induction via an ETS1 transcriptional pathway. Even under ATMdeficient conditions, the ATR-CHK1 axis compensates for loss in the DNA damage response, which results in HR recovery. The HGF receptor Met tyrosine kinase is responsible for promoting DNA repair by activating the PARP catalytic domain. Conclusion: These kinase-based signaling pathways are biologically important for understanding the compensatory system of HR, whereas inactivation of these kinases has shown promise for the release of PARPi resistance. Several lines of preclinical studies have demonstrated the potential use of kinase inhibitors to enhance PARPi sensitivity. We emphasize the clinical importance of chemical inhibitors as adjuvant drugs to block critical kinase activities and prevent the possible PARPi resistance.


Oncogene ◽  
2021 ◽  
Vol 40 (17) ◽  
pp. 3164-3179
Author(s):  
Yang Liu ◽  
Tianchi Tang ◽  
Xiaosheng Yang ◽  
Peng Qin ◽  
Pusen Wang ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies and rapidly progressive diseases. Exosomes and long noncoding RNAs (lncRNAs) are emerging as vital mediators in tumor cells and their microenvironment. However, the detailed roles and mechanisms of exosomal lncRNAs in PDAC progression remain unknown. Here, we aimed to clarify the clinical significance and mechanisms of exosomal lncRNA 01133 (LINC01133) in PDAC. We analyzed the expression of LINC01133 in PDAC and found that exosomal LINC01133 expression was high and positively correlated with higher TNM stage and poor overall survival rate of PDAC patients. Further research demonstrated that Periostin could increase exosome secretion and then enhance LINC01133 expression. In addition, Periostin increased p-EGFR, p-Erk, and c-myc expression, and c-myc could bind to the LINC01133 promoter region. These findings suggested that LINC01133 can be regulated by Periostin via EGFR pathway activity. We also observed that LINC01133 promoted the proliferation, migration, invasion, and epithelial–mesenchymal transition (EMT) of pancreatic cancer cells. We subsequently evaluated the effect of LINC01133 on the Wnt/β-catenin pathway and confirmed that LINC01133 can interact with Enhancer Of Zeste Homolog 2 (EZH2) and then promote H3K27 trimethylation. This can further silence AXIN2 and suppress GSK3 activity, ultimately activating β-catenin. Collectively, these data indicate that exosomal LINC01133 plays an important role in pancreatic tumor progression, and targeting LINC01133 may provide a potential treatment strategy for PDAC.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1090
Author(s):  
Hassan Sadozai ◽  
Animesh Acharjee ◽  
Thomas Gruber ◽  
Beat Gloor ◽  
Eva Karamitopoulou

Tumor budding is associated with epithelial-mesenchymal transition and diminished survival in a number of cancer types including pancreatic ductal adenocarcinoma (PDAC). In this study, we dissect the immune landscapes of patients with high grade versus low grade tumor budding to determine the features associated with immune escape and disease progression in pancreatic cancer. We performed immunohistochemistry-based quantification of tumor-infiltrating leukocytes and tumor bud assessment in a cohort of n = 111 PDAC patients in a tissue microarray (TMA) format. Patients were divided based on the ITBCC categories of tumor budding as Low Grade (LG: categories 1 and 2) and High Grade (HG: category 3). Tumor budding numbers and tumor budding grade demonstrated a significant association with diminished overall survival (OS). HG cases exhibit notably reduced densities of stromal (S) and intratumoral (IT) T cells. HG cases also display lower M1 macrophages (S) and increased M2 macrophages (IT). These findings were validated using gene expression data from TCGA. A published tumor budding gene signature demonstrated a significant association with diminished survival in PDAC patients in TCGA. Immune-related gene expression revealed an immunosuppressive TME in PDAC cases with high expression of the budding signature. Our findings highlight a number of immune features that permit an improved understanding of disease progression and EMT in pancreatic cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiraporn Kantapan ◽  
Siwaphon Paksee ◽  
Aphidet Duangya ◽  
Padchanee Sangthong ◽  
Sittiruk Roytrakul ◽  
...  

Abstract Background Radioresistance can pose a significant obstacle to the effective treatment of breast cancers. Epithelial–mesenchymal transition (EMT) is a critical step in the acquisition of stem cell traits and radioresistance. Here, we investigated whether Maprang seed extract (MPSE), a gallotannin-rich extract of seed from Bouea macrophylla Griffith, could inhibit the radiation-induced EMT process and enhance the radiosensitivity of breast cancer cells. Methods Breast cancer cells were pre-treated with MPSE before irradiation (IR), the radiosensitizing activity of MPSE was assessed using the colony formation assay. Radiation-induced EMT and stemness phenotype were identified using breast cancer stem cells (CSCs) marker (CD24−/low/CD44+) and mammosphere formation assay. Cell motility was determined via the wound healing assay and transwell migration. Radiation-induced cell death was assessed via the apoptosis assay and SA-β-galactosidase staining for cellular senescence. CSCs- and EMT-related genes were confirmed by real-time PCR (qPCR) and Western blotting. Results Pre-treated with MPSE before irradiation could reduce the clonogenic activity and enhance radiosensitivity of breast cancer cell lines with sensitization enhancement ratios (SERs) of 2.33 and 1.35 for MCF7 and MDA-MB231cells, respectively. Pretreatment of breast cancer cells followed by IR resulted in an increased level of DNA damage maker (γ-H2A histone family member) and enhanced radiation-induced cell death. Irradiation induced EMT process, which displayed a significant EMT phenotype with a down-regulated epithelial marker E-cadherin and up-regulated mesenchymal marker vimentin in comparison with untreated breast cancer cells. Notably, we observed that pretreatment with MPSE attenuated the radiation-induced EMT process and decrease some stemness-like properties characterized by mammosphere formation and the CSC marker. Furthermore, pretreatment with MPSE attenuated the radiation-induced activation of the pro-survival pathway by decrease the expression of phosphorylation of ERK and AKT and sensitized breast cancer cells to radiation. Conclusion MPSE enhanced the radiosensitivity of breast cancer cells by enhancing IR-induced DNA damage and cell death, and attenuating the IR-induced EMT process and stemness phenotype via targeting survival pathways PI3K/AKT and MAPK in irradiated breast cancer cells. Our findings describe a novel strategy for increasing the efficacy of radiotherapy for breast cancer patients using a safer and low-cost natural product, MPSE.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jessica Buck ◽  
Patrick J. C. Dyer ◽  
Hilary Hii ◽  
Brooke Carline ◽  
Mani Kuchibhotla ◽  
...  

Medulloblastoma is the most common malignant childhood brain tumor, and 5-year overall survival rates are as low as 40% depending on molecular subtype, with new therapies critically important. As radiotherapy and chemotherapy act through the induction of DNA damage, the sensitization of cancer cells through the inhibition of DNA damage repair pathways is a potential therapeutic strategy. The poly-(ADP-ribose) polymerase (PARP) inhibitor veliparib was assessed for its ability to augment the cellular response to radiation-induced DNA damage in human medulloblastoma cells. DNA repair following irradiation was assessed using the alkaline comet assay, with veliparib inhibiting the rate of DNA repair. Veliparib treatment also increased the number of γH2AX foci in cells treated with radiation, and analysis of downstream pathways indicated persistent activation of the DNA damage response pathway. Clonogenicity assays demonstrated that veliparib effectively inhibited the colony-forming capacity of medulloblastoma cells, both as a single agent and in combination with irradiation. These data were then validated in vivo using an orthotopic implant model of medulloblastoma. Mice harboring intracranial D425 medulloblastoma xenografts were treated with vehicle, veliparib, 18 Gy multifractionated craniospinal irradiation (CSI), or veliparib combined with 18 Gy CSI. Animals treated with combination therapy exhibited reduced tumor growth rates concomitant with increased intra-tumoral apoptosis observed by immunohistochemistry. Kaplan–Meier analyses revealed a statistically significant increase in survival with combination therapy compared to CSI alone. In summary, PARP inhibition enhanced radiation-induced cytotoxicity of medulloblastoma cells; thus, veliparib or other brain-penetrant PARP inhibitors are potential radiosensitizing agents for the treatment of medulloblastoma.


2019 ◽  
Author(s):  
Mark Kalisz ◽  
Edgar Bernardo ◽  
Anthony Beucher ◽  
Miguel Angel Maestro ◽  
Natalia del Pozo ◽  
...  

AbstractDefects in transcriptional regulators of pancreatic exocrine differentiation have been implicated in pancreatic tumorigenesis, but the molecular mechanisms are poorly understood. The locus encoding the transcription factor HNF1A harbors susceptibility variants for pancreatic ductal adenocarcinoma (PDAC), while KDM6A, encoding the histone demethylase UTX, carries somatic mutations in PDAC. Here, we show that pancreas-specific Hnf1a null mutations phenocopy Utx deficient mutations, and both synergize with KrasG12D to cause PDAC with sarcomatoid features. We combine genetic, epigenomic and biochemical studies to show that HNF1A recruits UTX to genomic binding sites in pancreatic acinar cells. This remodels the acinar enhancer landscape, activates a differentiation program, and indirectly suppresses oncogenic and epithelial-mesenchymal transition genes. Finally, we identify a subset of non-classical PDAC samples that exhibit the HNF1A/UTX-deficient molecular phenotype. These findings provide direct genetic evidence that HNF1A-deficiency promotes PDAC. They also connect the tumor suppressive role of UTX deficiency with a cell-specific molecular mechanism that underlies PDAC subtype definition.


2021 ◽  
Vol 39 (3_suppl) ◽  
pp. TPS354-TPS354
Author(s):  
Thomas J. George ◽  
David L. DeRemer ◽  
Ji-Hyun Lee ◽  
Stephen Staal ◽  
Merry Jennifer Markham ◽  
...  

TPS354 Background: BRCA1-Associated Protein 1 (BAP1) is a critical regulator of the cell cycle, cellular differentiation, cell death, and DNA damage response. It also acts as a tumor suppressor. Preclinical models demonstrate significant synthetic lethality in BAP1 mutant cell lines and patient xenografts when treated with PARP inhibitors, independent of underlying BRCA status, suggesting this mutation confers a BRCA-like phenotype. BAP1 is mutated, leading to a loss of functional protein, in up to 30% of cholangiocarcinomas as well as several other solid tumors. Methods: This phase 2, open-label, single arm multicenter study aims to exploit the concept of synthetic lethality with the use of the PARP inhibitor niraparib in pts with metastatic relapsed or refractory solid tumors. Eligible pts with measurable metastatic and incurable solid tumors are assigned to one of two cohorts: Cohort A (histology-specific): tumors harboring suspected BAP1 mutations including cholangiocarcinoma, uveal melanoma, mesothelioma or clear cell renal cell carcinoma with tissue available for BAP1 mutational assessment via NGS or Cohort B (histology-agnostic): tumors with known DNA damage response (DDR) mutations (Table) confirmed by CLIA-approved NGS. Other key eligibility criteria include age ≥18 years, adequate cardiac, renal, hepatic function and Eastern Cooperative Oncology Group performance status of 0 to 1. Pts with known BRCA1 or BRCA2 mutations or prior PARPi exposure are excluded. Pts receive niraparib 200-300mg daily (depending on weight and/or platelet count) continuously. Primary endpoint is objective response rate with secondary endpoints of PFS, OS, toxicity and exploratory biomarker determinations. Radiographic response by RECIST criteria is measured every 8 weeks while on treatment. Cohort A has fully enrolled. Cohort B enrollment continues to a maximum of 47 total evaluable subjects with expansion cohorts allowable for histologic or molecular subtypes meeting pre-specified responses. NCT03207347 Clinical trial information: NCT03207347. [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document