584 Therapeutic vascular normalization to promote tumor-associated tertiary lymphoid structures

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A619-A619
Author(s):  
Jessica Filderman ◽  
Manoj Chelvanambi ◽  
Walter Storkus

BackgroundTertiary lymphoid structures (TLS) are non-encapsulated immune cell aggregates that form at sites of chronic inflammation, including in and around tumors. Recent studies have shown that the presence of TLS in human tumors is an indicator of positive clinical outcome. However, due to dysregulated angiogenesis, many tumors have a poorly-organized and leaky vasculature that impedes entry of immune effector cells into tumors and consequently, TLS formation. It has been shown in pre-clinical studies that low doses of antiangiogenic agents normalize the tumor vasculature, leading us to hypothesize that treating tumors with low-doses (well below drug MTD) of vascular normalizing (VN) therapies will improve immune cell infiltration and TLS formation within the tumor microenvironment (TME).MethodsTo test this hypothesis, melanoma-bearing mice were treated intratumorally with VN agents. Five days post-treatment, tumors were digested into single cell suspensions and RNA was isolated and used for RT-PCR. Transcript levels of TLS-promoting factors (CCL19, CCL21, CXCL13) and markers of vascular normalization (HIF1A, GLUT1) and inflammation/immune cell infiltration (CXCL10, VCAM1, CD8A) were measured and compared to PBS treated controls. Changes in tumor vasculature were evaluated using immunofluorescence microscopy (IFM) of tumor sections stained with CD31, PNAd, and PDGFRβ. Fluorescently-labeled lectin was injected into the mice to observe tumor perfusion. TLS formation was evaluated in tumor sections using IFM, with TLS being defined as PNAd+ vessels surrounded by clusters of CD45+ cells.ResultsWe observed that the VN agents dasatinib, STING agonist, bevacizumab, and agonist anti-TNFR1 antibody each induced global changes in the TME that are consistent with enhanced immune cell infiltration and TLS formation. These changes include increases in expression of CCL19, CCL21, and VCAM1. Dasatinib and STING agonists were shown to promote VN, as demonstrated by improved lectin perfusion into the tumor and increased pericyte coverage of blood vessels on-treatment.ConclusionsVN agents induce global changes in immune cell infiltration and TLS-promoting factors in the TME. In vivo, these agents induce VN in the TME and promote TLS formation. This knowledge can be used to develop optimal combination immunotherapy designs in the cancer setting.

2018 ◽  
Vol 200 (2) ◽  
pp. 432-442 ◽  
Author(s):  
Victor H. Engelhard ◽  
Anthony B. Rodriguez ◽  
Ileana S. Mauldin ◽  
Amber N. Woods ◽  
J. David Peske ◽  
...  

2020 ◽  
Vol 21 (21) ◽  
pp. 8407
Author(s):  
Sabine Hülsen ◽  
Eleonora Lippolis ◽  
Fulvia Ferrazzi ◽  
Wolfgang Otto ◽  
Luitpold Distel ◽  
...  

Stage pT1 bladder cancer (BC) shows highly diverse outcomes. Predictive markers are required to stratify patients for personalized treatment. The present study aimed to validate immune response quantification as a prognostic marker. Patients with pT1 BC (n = 167) treated by transurethral resection of the bladder (TURB) were enrolled. Formaldehyde-fixed paraffin-embedded material was stained for CD3 and CD8. Corresponding T cells were counted in three regions with the highest immune response. Numbers of tertiary lymphoid structures (TLS) and lymphocyte aggregates (LA) were quantified. High CD3+ stroma T-cell infiltration was associated with improved survival (p = 0.045), especially in the G3 subgroup (p = 0.01). Cluster with higher immune response showed less recurrence (p = 0.034) and favorable overall survival (OS) (p = 0.019). In contrast, higher CD3+ and CD8+ tumor T-cell infiltration seemed to have a negative impact on prognosis. TLS and LA were more frequently observed in G3 tumors, indicating an increased anti-tumoral immune response. We proved the role of immune cell infiltration and showed that higher infiltration numbers of CD3+ (not CD8+) lymphocytes in the stroma are associated with favorable outcome. Immune cell quantification could be used as a marker to help stratify patients’ risk and therefore, to optimize patients’ management and follow-up examination as well as possible therapies.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 577 ◽  
Author(s):  
Holly A. Maulhardt ◽  
Lauren Hylle ◽  
Michael V. Frost ◽  
Ashley Tornio ◽  
Sara Dafoe ◽  
...  

Intratumoral (IT) administration of submicron particle docetaxel (NanoDoce®, NanOlogy LLC, Fort Worth, TX, USA) and its efficacy against genitourinary-oncologic xenografts in rats and mice, xenograft-site docetaxel concentrations and immune-cell infiltration were studied. IT-NanoDoce®, IV-docetaxel and IT-vehicle were administered to clear cell renal carcinoma (786-O: rats), transitional cell bladder carcinoma (UM-UC-3: mice) and prostate carcinoma (PC-3: mice). Treatments were given every 7 days with 1, 2, or 3 doses administered. Animals were followed for tumor growth and clinical signs. At necropsy, 786-O and UM-UC-3 tumor-site tissues were evaluated by H&E and IHC and analyzed by LC-MS/MS for docetaxel concentration. Two and 3 cycles of IT-NanoDoce® significantly reduced UM-UC-3 tumor volume (p < 0.01) and eliminated most UM-UC-3 and 786-O tumors. In both models, NanoDoce® treatment was associated with (peri)tumor-infiltrating immune cells. Lymphoid structures were observed in IT-NanoDoce®-treated UM-UC-3 animals adjacent to tumor sites. IT-vehicle and IV-docetaxel exhibited limited immune-cell infiltration. In both studies, high levels of docetaxel were detected in NanoDoce®-treated animals up to 50 days post-treatment. In the PC-3 study, IT-NanoDoce® and IV-docetaxel resulted in similar tumor reduction. NanoDoce® significantly reduced tumor volume compared to IT-vehicle in all xenografts (p < 0.0001). We hypothesize that local, persistent, therapeutic levels of docetaxel from IT-NanoDoce® reduces tumor burden while increasing immune-cell infiltration. IT NanoDoce® treatment of prostate, renal and bladder cancer may result in enhanced tumoricidal effects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marie-Astrid Boutet ◽  
Alessandra Nerviani ◽  
Gloria Lliso-Ribera ◽  
Roberto Leone ◽  
Marina Sironi ◽  
...  

AimsTo determine the relationship between PTX3 systemic and synovial levels and the clinical features of rheumatoid arthritis (RA) in a cohort of early, treatment naïve patients and to explore the relevance of PTX3 expression in predicting response to conventional-synthetic (cs) Disease-Modifying-Anti-Rheumatic-Drugs (DMARDs) treatment.MethodsPTX3 expression was analyzed in 119 baseline serum samples from early naïve RA patients, 95 paired samples obtained 6-months following the initiation of cs-DMARDs treatment and 43 healthy donors. RNA-sequencing analysis and immunohistochemistry for PTX3 were performed on a subpopulation of 79 and 58 synovial samples, respectively, to assess PTX3 gene and protein expression. Immunofluorescence staining was performed to characterize PTX3 expressing cells within the synovium.ResultsCirculating levels of PTX3 were significantly higher in early RA compared to healthy donors and correlated with disease activity at baseline and with the degree of structural damages at 12-months. Six-months after commencing cs-DMARDs, a high level of PTX3, proportional to the baseline value, was still detectable in the serum of patients, regardless of their response status. RNA-seq analysis confirmed that synovial transcript levels of PTX3 correlated with disease activity and the presence of mediators of inflammation, tissue remodeling and bone destruction at baseline. PTX3 expression in the synovium was strongly linked to the degree of immune cell infiltration, the presence of ectopic lymphoid structures and seropositivity for autoantibodies. Accordingly, PTX3 was found to be expressed by numerous synovial cell types such as plasma cells, fibroblasts, vascular and lymphatic endothelial cells, macrophages, and neutrophils. The percentage of PTX3-positive synovial cells, although significantly reduced at 6-months post-treatment as a result of global decreased cellularity, was similar in cs-DMARDs responders and non-responders.ConclusionThis study demonstrates that, early in the disease and prior to treatment modification, the level of circulating PTX3 is a reliable marker of RA activity and predicts a high degree of structural damages at 12-months. In the joint, PTX3 associates with immune cell infiltration and the presence of ectopic lymphoid structures. High synovial and peripheral blood levels of PTX3 are associated with chronic inflammation characteristic of RA. Additional studies to determine the mechanistic link are required.


2015 ◽  
Vol 53 (12) ◽  
Author(s):  
AB Widera ◽  
L Pütter ◽  
S Leserer ◽  
G Campos ◽  
K Rochlitz ◽  
...  

Author(s):  
Lu Yuan ◽  
Xixi Wu ◽  
Longshan Zhang ◽  
Mi Yang ◽  
Xiaoqing Wang ◽  
...  

AbstractPulmonary surfactant protein A1 (SFTPA1) is a member of the C-type lectin subfamily that plays a critical role in maintaining lung tissue homeostasis and the innate immune response. SFTPA1 disruption can cause several acute or chronic lung diseases, including lung cancer. However, little research has been performed to associate SFTPA1 with immune cell infiltration and the response to immunotherapy in lung cancer. The findings of our study describe the SFTPA1 expression profile in multiple databases and was validated in BALB/c mice, human tumor tissues, and paired normal tissues using an immunohistochemistry assay. High SFTPA1 mRNA expression was associated with a favorable prognosis through a survival analysis in lung adenocarcinoma (LUAD) samples from TCGA. Further GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that SFTPA1 was involved in the toll-like receptor signaling pathway. An immune infiltration analysis clarified that high SFTPA1 expression was associated with an increased number of M1 macrophages, CD8+ T cells, memory activated CD4+ T cells, regulatory T cells, as well as a reduced number of M2 macrophages. Our clinical data suggest that SFTPA1 may serve as a biomarker for predicting a favorable response to immunotherapy for patients with LUAD. Collectively, our study extends the expression profile and potential regulatory pathways of SFTPA1 and may provide a potential biomarker for establishing novel preventive and therapeutic strategies for lung adenocarcinoma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander J. Dwyer ◽  
Jacob M. Ritz ◽  
Jason S. Mitchell ◽  
Tijana Martinov ◽  
Mohannad Alkhatib ◽  
...  

AbstractThe notion that T cell insulitis increases as type 1 diabetes (T1D) develops is unsurprising, however, the quantitative analysis of CD4+ and CD8+ T cells within the islet mass is complex and limited with standard approaches. Optical microscopy is an important and widely used method to evaluate immune cell infiltration into pancreatic islets of Langerhans for the study of disease progression or therapeutic efficacy in murine T1D. However, the accuracy of this approach is often limited by subjective and potentially biased qualitative assessment of immune cell subsets. In addition, attempts at quantitative measurements require significant time for manual analysis and often involve sophisticated and expensive imaging software. In this study, we developed and illustrate here a streamlined analytical strategy for the rapid, automated and unbiased investigation of islet area and immune cell infiltration within (insulitis) and around (peri-insulitis) pancreatic islets. To this end, we demonstrate swift and accurate detection of islet borders by modeling cross-sectional islet areas with convex polygons (convex hulls) surrounding islet-associated insulin-producing β cell and glucagon-producing α cell fluorescent signals. To accomplish this, we used a macro produced with the freeware software ImageJ equipped with the Fiji Is Just ImageJ (FIJI) image processing package. Our image analysis procedure allows for direct quantification and statistical determination of islet area and infiltration in a reproducible manner, with location-specific data that more accurately reflect islet areas as insulitis proceeds throughout T1D. Using this approach, we quantified the islet area infiltrated with CD4+ and CD8+ T cells allowing statistical comparison between different age groups of non-obese diabetic (NOD) mice progressing towards T1D. We found significantly more CD4+ and CD8+ T cells infiltrating the convex hull-defined islet mass of 13-week-old non-diabetic and 17-week-old diabetic NOD mice compared to 4-week-old NOD mice. We also determined a significant and measurable loss of islet mass in mice that developed T1D. This approach will be helpful for the location-dependent quantitative calculation of islet mass and cellular infiltration during T1D pathogenesis and can be combined with other markers of inflammation or activation in future studies.


Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 3410-3425
Author(s):  
Xiangzhou Tan ◽  
Linfeng Mao ◽  
Changhao Huang ◽  
Weimin Yang ◽  
Jianping Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document