scholarly journals Enhanced CD4+ and CD8+ T cell infiltrate within convex hull defined pancreatic islet borders as autoimmune diabetes progresses

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander J. Dwyer ◽  
Jacob M. Ritz ◽  
Jason S. Mitchell ◽  
Tijana Martinov ◽  
Mohannad Alkhatib ◽  
...  

AbstractThe notion that T cell insulitis increases as type 1 diabetes (T1D) develops is unsurprising, however, the quantitative analysis of CD4+ and CD8+ T cells within the islet mass is complex and limited with standard approaches. Optical microscopy is an important and widely used method to evaluate immune cell infiltration into pancreatic islets of Langerhans for the study of disease progression or therapeutic efficacy in murine T1D. However, the accuracy of this approach is often limited by subjective and potentially biased qualitative assessment of immune cell subsets. In addition, attempts at quantitative measurements require significant time for manual analysis and often involve sophisticated and expensive imaging software. In this study, we developed and illustrate here a streamlined analytical strategy for the rapid, automated and unbiased investigation of islet area and immune cell infiltration within (insulitis) and around (peri-insulitis) pancreatic islets. To this end, we demonstrate swift and accurate detection of islet borders by modeling cross-sectional islet areas with convex polygons (convex hulls) surrounding islet-associated insulin-producing β cell and glucagon-producing α cell fluorescent signals. To accomplish this, we used a macro produced with the freeware software ImageJ equipped with the Fiji Is Just ImageJ (FIJI) image processing package. Our image analysis procedure allows for direct quantification and statistical determination of islet area and infiltration in a reproducible manner, with location-specific data that more accurately reflect islet areas as insulitis proceeds throughout T1D. Using this approach, we quantified the islet area infiltrated with CD4+ and CD8+ T cells allowing statistical comparison between different age groups of non-obese diabetic (NOD) mice progressing towards T1D. We found significantly more CD4+ and CD8+ T cells infiltrating the convex hull-defined islet mass of 13-week-old non-diabetic and 17-week-old diabetic NOD mice compared to 4-week-old NOD mice. We also determined a significant and measurable loss of islet mass in mice that developed T1D. This approach will be helpful for the location-dependent quantitative calculation of islet mass and cellular infiltration during T1D pathogenesis and can be combined with other markers of inflammation or activation in future studies.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14532-e14532
Author(s):  
Joerg Wischhusen ◽  
Markus Haake ◽  
Neha Vashist ◽  
Sabrina Genßler ◽  
Kilian Wistuba-Hamprecht ◽  
...  

e14532 Background: Growth and differentiation factor 15 (GDF-15) is a divergent member of the TGF-β superfamily with low to absent expression in healthy tissue. GDF-15 has been linked to feto-maternal immune tolerance, to prevention of excessive immune cell infiltration during tissue damage, and to anorexia. Various major tumor types secrete high levels of GDF-15. In cancer patients, elevated GDF-15 serum levels correlate with poor prognosis and reduced overall survival (OS). Methods: Impact of a proprietary GDF-15 neutralizing antibody (CTL-002) regarding T cell trafficking was analyzed by whole blood adhesion assays, a HV18-MK melanoma-bearing humanized mouse model and a GDF-15-transgenic MC38 model. Additionally, patient GDF-15 serum levels were correlated with clinical response and overall survival in oropharyngeal squamous cell carcinoma (OPSCC) and melanoma brain metastases. Results: In whole blood cell adhesion assays GDF-15 impairs adhesion of T and NK cells to activated endothelial cells. Neutralization of GDF-15 by CTL-002 rescued T cell adhesion. In HV18-MK-bearing humanized mice CTL-002 induced a strong increase in TIL numbers. Subset analysis revealed an overproportional enrichment of T cells, in particular CD8+ T cells. As immune cell exclusion is detrimental for checkpoint inhibitor (CPI) therapy, a GDF-15-transgenic MC38 model was tested for anti-PD-1 therapy efficacy. In GDF-15 overexpressing MC38 tumors response to anti PD-1 therapy was reduced by 90% compared to wtMC38 tumors. Combining aPD-1 with CTL-002 resulted in 50% of the mice rejecting their GDF-15 overexpressing tumors. Clinically, inverse correlations of GDF-15 levels with CD8+ T cell infiltration were shown for HPV+ OPSCC and for melanoma brain metastases. GDF-15 serum levels were significantly higher in HPV- than in HPV+ OPSCC patient (p < 0.0001). Low GDF-15 levels corresponded to longer OS in both HPV- and HPV+ OPSCC. In two independent melanoma patient cohorts treated with nivolumab or pembrolizumab low baseline serum GDF-15 levels were predictive for clinical response to anti-PD1 treatment and superior OS. Bivariate analysis including LDH indicates that GDF-15 independently predicts poor survival in aPD-1 treated melanoma patients. Conclusions: Taken together our in vitro and in vivo data show that elevated GDF-15 levels block T-cell infiltration into tumor tissues. Neutralizing GDF-15 with CTL-002 restores the ability of T cells to extravasate blood vessels and enter tumor tissue both in vitro and in vivo. In melanoma, patients with higher GDF-15 levels have significantly shorter survival and are less likely to respond to anti-PD1 therapy. GDF-15 may thus serve as a new predictive biomarker for anti-PD1 response, but most importantly also represents a novel target for cancer immunotherapy to improve tumor immune cell infiltration and response to anti-PD1 therapy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A963-A963
Author(s):  
Alexandra Cabanov ◽  
Stefani Spranger ◽  
Thomas Gajewski ◽  
Alexandra Cabanov ◽  
Elen Torres-Mejia

BackgroundLack of response to checkpoint blockade immunotherapy has been linked to a deficiency of immune cell infiltration within the tumor microenvironment (TME). One demonstrated mechanism sufficient for the non-T cell inflamed TME is tumor cell-intrinsic activation of the β-catenin signaling pathway. Using genetically engineered mouse models (GEMMs), tumors constitutively expressing active β-catenin lack a robust endogenous T cell infiltrate and fail to respond to immunotherapies. In support of these mouse studies, human melanoma metastases with increased active β-catenin signaling exhibit decreased numbers of tumor infiltrating Batf3-driven cDC1 and CD3+ T cells. However, whether temporal activation and inactivation of β-catenin within the same developing tumor would alter immune cell infiltration is not known.MethodsA model was created in which tamoxifen-regulated Cre-recombinase mediates BRAFV600E oncogene activation and PTEN tumor suppressor gene deletion as well as expression of a doxycycline regulatable reverse transactivator. Upon administration of doxycycline via the drinking water to these animals, a non-degradable form of nuclear β-catenin becomes expressed. Immunofluorescence assays were performed assessing the β-catenin expression status in the tumor cells as well as immune cell infiltration within the TME. Additionally, immunotherapy efficacy experiments were performed.ResultsWe observed that administration of doxycycline to these animals drove expression of an active form of nuclear β-catenin. Activation of nuclear β-catenin resulted in a 2-fold decrease in the overall CD3+ T cells infiltration into the TME. Moreover, this decrease in immune infiltration also resulted in loss of anti-PD-L1 + anti-CTLA-4 therapy efficacy. We next performed studies assessing the kinetics with which β-catenin levels diminish upon doxycycline removal. Switching animals to regular drinking water resulted in rapid reduction of nuclear β-catenin levels, including 50 percent reduction after two days of doxycycline removal and almost complete reduction of nuclear β-catenin after four days.ConclusionsWe describe a novel mouse model in which we induce autochthonous melanoma tumors in mice along with inducible expression of a non-degradable, nuclear β-catenin modulated by doxycycline in the drinking water. Activation of β-catenin signaling in melanoma tumors resulted in reduction of immune cells in the TME as well as loss of checkpoint blockade immunotherapy efficacy. This activation can be rapidly reversed by removing doxycycline, allowing for future studies evaluating the consequences of turning off β-catenin once it has already driven a non-T cell-inflamed TME.AcknowledgementsThis work was supported by the Wissler Fellowship from the University of Chicago (SS) K99/R00 (NCI; SS), and R35CA210098 (TG).


2018 ◽  
Vol 36 (4) ◽  
pp. 346-351 ◽  
Author(s):  
Keishi Adachi ◽  
Yosuke Kano ◽  
Tomohiko Nagai ◽  
Namiko Okuyama ◽  
Yukimi Sakoda ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A558-A558
Author(s):  
Emmanuel Valentin ◽  
Aude de Gassart ◽  
Patrick Brune ◽  
Clément Ghigo ◽  
Sophie Agaugué ◽  
...  

BackgroundICT01, a novel, anti-BTN3A immunotherapeutic mAb for activating g9d2T cells, is currently evaluated in a Phase 1/2a clinical trial in patients with advanced-stage, relapsed/refractory cancer (NCT04243499, EVICTION). ICT01 indirectly activates g9d2 T cells that secrete inflammatory cytokines and migrate into tumors to coordinate antitumor immune responses. Therefore, the baseline number of g9d2 T effector cells constitutes a biomarker of interest and a potential selection criterion for target patients.MethodsFull immunophenotyping (cell counts and activation state) was performed by flow cytometry on fresh blood collected pre- and on-treatment. Serum cytokines were monitored at baseline and post-treatment. Tumor biopsies were harvested at baseline and on Day 28, and multiplex IHC coupled with digital pathology was used to quantify g9d2T cell, CD8 T cell, NK cell, and T reg infiltration and activation stateResultsBaseline circulating g9d2 T cell count was highly variable in solid tumor patients enrolled in the monotherapy arm of EVICTION (median 6918 cell/mL, n=26). Melanoma and colorectal patients displayed respectively the highest (median 42277 cell/mL, n=3) and the lowest (median 3040 cell/mL, n=9) baseline number. During the dose escalation phase, g9d2 T cell activation (CD69+) and migration from the blood was observed 30 min post-ICT01 administration. Serum cytokine levels showed variability within ICT01 dose cohorts. IFNg, TNFa, IL-6 and IL-8 levels post-ICT01 dosing were ICT01 dose dependent and clearly related to baseline number of circulating g9d2 T cells. Activation of peripheral blood NK cells, granulocytes and CD8 T cells was observed post-dosing at ICT01 doses ≥7 mg, which was significantly correlated with baseline g9d2 T cell counts, but not with other immune subsets (Spearman r=0.51, 0.47 and 0.65 for CD69+NK, CD69+CD8 and PD-L1+granulocytes respectively, p<0.05, n=19). Baseline circulating g9d2 T cell count was positively correlated with gdTCR+ T cell density in baseline tumor biopsies (Spearman r=0.76, p=0.0086, n=11). Finally, a trend was observed between baseline g9d2 T cell counts and overall tumor immune cell infiltration and activation post-ICT01 treatment, with 4 patients (out of 13 with available biopsy pairs) with g9d2 T cell counts above the median displaying the highest tumor immune cell infiltration and activation.ConclusionsThese results suggest the utility of measuring baseline g9d2 T cells as part of the patient selection process for ICT01 clinical trials. Patient enrichment based on this biomarker will be tested in EVICTION expansion arms where a minimum baseline threshold of g9d2 T cells counts will be one of the eligibility criteria.Trial RegistrationNCT04243499Ethics ApprovalThe study has obtained Competent Authority and Ethics Committee approvals. Informed consent forms were obtained from all enrolled patients.


Author(s):  
Lu Yuan ◽  
Xixi Wu ◽  
Longshan Zhang ◽  
Mi Yang ◽  
Xiaoqing Wang ◽  
...  

AbstractPulmonary surfactant protein A1 (SFTPA1) is a member of the C-type lectin subfamily that plays a critical role in maintaining lung tissue homeostasis and the innate immune response. SFTPA1 disruption can cause several acute or chronic lung diseases, including lung cancer. However, little research has been performed to associate SFTPA1 with immune cell infiltration and the response to immunotherapy in lung cancer. The findings of our study describe the SFTPA1 expression profile in multiple databases and was validated in BALB/c mice, human tumor tissues, and paired normal tissues using an immunohistochemistry assay. High SFTPA1 mRNA expression was associated with a favorable prognosis through a survival analysis in lung adenocarcinoma (LUAD) samples from TCGA. Further GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that SFTPA1 was involved in the toll-like receptor signaling pathway. An immune infiltration analysis clarified that high SFTPA1 expression was associated with an increased number of M1 macrophages, CD8+ T cells, memory activated CD4+ T cells, regulatory T cells, as well as a reduced number of M2 macrophages. Our clinical data suggest that SFTPA1 may serve as a biomarker for predicting a favorable response to immunotherapy for patients with LUAD. Collectively, our study extends the expression profile and potential regulatory pathways of SFTPA1 and may provide a potential biomarker for establishing novel preventive and therapeutic strategies for lung adenocarcinoma.


2021 ◽  
Vol 10 ◽  
Author(s):  
Jia-An Zhang ◽  
Xu-Yue Zhou ◽  
Dan Huang ◽  
Chao Luan ◽  
Heng Gu ◽  
...  

Melanoma remains a potentially deadly malignant tumor. The incidence of melanoma continues to rise. Immunotherapy has become a new treatment method and is widely used in a variety of tumors. Original melanoma data were downloaded from TCGA. ssGSEA was performed to classify them. GSVA software and the "hclust" package were used to analyze the data. The ESTIMATE algorithm screened DEGs. The edgeR package and Venn diagram identified valid immune-related genes. Univariate, LASSO and multivariate analyses were used to explore the hub genes. The "rms" package established the nomogram and calibrated the curve. Immune infiltration data were obtained from the TIMER database. Compared with that of samples in the high immune cell infiltration cluster, we found that the tumor purity of samples in the low immune cell infiltration cluster was higher. The immune score, ESTIMATE score and stromal score in the low immune cell infiltration cluster were lower. In the high immune cell infiltration cluster, the immune components were more abundant, while the tumor purity was lower. The expression levels of TIGIT, PDCD1, LAG3, HAVCR2, CTLA4 and the HLA family were also higher in the high immune cell infiltration cluster. Survival analysis showed that patients in the high immune cell infiltration cluster had shorter OS than patients in the low immune cell infiltration cluster. IGHV1-18, CXCL11, LTF, and HLA-DQB1 were identified as immune cell infiltration-related DEGs. The prognosis of melanoma was significantly negatively correlated with the infiltration of CD4+ T cells, CD8+ T cells, dendritic cells, neutrophils and macrophages. In this study, we identified immune-related melanoma core genes and relevant immune cell subtypes, which may be used in targeted therapy and immunotherapy of melanoma.


2014 ◽  
Vol 297 (5) ◽  
pp. 925-938 ◽  
Author(s):  
Lauren J. Howson ◽  
Katrina M. Morris ◽  
Takumi Kobayashi ◽  
Cesar Tovar ◽  
Alexandre Kreiss ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Kuan Hu ◽  
Lei Yao ◽  
Yuanliang Yan ◽  
Lei Zhou ◽  
Juanni Li

Background. All YTH domain family members are m6A reader proteins accounting for the methylation modulation involved in the process of tumorgenesis and tumor progression. However, the expression profiles and roles of the YTH domain family in lung adenocarcinoma (LUAD) remain to be further illustrated. Methods. GEPIA2 and TNMplot databases were used to generate the expression profiles of the YTH family. Kaplan-Meier plotter database was employed to analysis the prognostic value of the YTH family. Coexpression profiles and genetic alterations analysis of the YTH family were undertaken using the cBioPortal database. YTH family protein-associated protein-protein interaction (PPI) network was identified by using STRING. Functional enrichment analysis was performed with the help of the WebGestalt database. The correlation analysis between the YTH family and immune cell infiltration in LUAD was administrated by using the TIMER2.0 database. Results. mRNA expression of YTHDC1 and YTHDC2 was significantly lower in LUAD, whereas YTHDF1, YTHDF2, and YTHDF3 with apparently higher expression. YTHDF2 expression was observed to be the highest in the nonsmoker subgroup, and its expression gradually decreased with the increased severity of smoking habit. LUAD patients with low expression of YTHDC2, YTHDF1, and YTHDF2 were correlated with a better overall survival (OS) time. The YTHDF1 genetic alteration rate was 26%, which was the highest in the YTH family. The major cancer-associated functions of YTH family pointed in the direction of immunomodulation, especially antigen processing and presentation. Most of the YTH family members were significantly correlated with the infiltration of CD4+ T cells, CD8+ T cells, macrophages, and neutrophils, indicating the deep involvement of the YTH domain family in the immune cell infiltration in LUAD. Conclusion. The molecular and expression profiles of the YTH family were dysregulated in LUAD. YTH family members (especially YTHDC2) were promising biomarkers and potential therapeutic targets that may bring benefit for the patients with LUAD.


2020 ◽  
Author(s):  
Biao Huang ◽  
Wei Han ◽  
Zu-Feng Sheng ◽  
Guo-Liang Shen

Abstract Background Skin cutaneous melanoma (SKCM) is known as the most malignancy and treatment-resistant in human tumor, causing about 72% of deaths in skin carcinoma. However, the potential mechanism and new effective targets remain to be further elucidated. Available datasets such as Gene Expression Omnibus (GEO) can be utilized to search for novel therapeutic targets and prognostic biomarkers. Methods Three data sets were downloaded from GEO database . The differentially expressed genes (DEGs) were identified via Venn software. Protein‐protein interaction network of DEGs was developed and the module hub genes analysis was constructed by Cytoscape. Subsequently, multiple online tools and Kaplan-Meier survival curves were analyzed to detect underlying signaling pathways, gene expression, drug-gene interaction and prognostic value of hub genes. In addition, we explored the correlation between hub genes and immune cell infiltration. At last, the related miRNA, lncRNA networks were constructed by R software. Results A total of 308 DEGs and 12 hub genes were identified. Function and pathway enrichment results demonstrated a correlation between DEGs and the tumor microenvironment, immune response and melanoma tumorigenesis. Subsequently, we focused on assessing potential value of 12 hub genes. Seven hub genes ( CCL4, CCL5, NMU, GAL, CXCL9, CXCL10, CXCL13 ) were identified with significant overall survival for prognosis. What’s more, five of these seven hub genes were found to be related to clinical stages (P values<0.05). In addition, the most important pathways of hub genes include interleukin-10 signaling, peptide ligand-binding receptors, which play important roles in tumor microenvironment for immune activation or immunosuppressive by regulating the infiltration of immune cells. Our results revealed a strong positive correlation between gene expression (CCL4, CCL5, CXCL9, CXCL10 and CXCL13) and immune cell infiltration (B-cell, CD8+ T cells, CD4+ T cells, macrophages, Neutrophils, Dendritic cells). Interestingly, 8 of 12 hub genes (CXCL10, CCL4, CCL5, IL6, CXCL2, PTGER3, GAL, NPY1R) were also found in the predicted drug-gene interaction. The related miRNA, lncRNA for diagnosis and prognosis were found in networks. Conclusion In conclusion, CCL4, CCL5, NMU, GAL, CXCL9, CXCL10, CXCL13 were of high prognostic value and may be potential targets for the diagnosis and therapy of patients with melanoma.


Author(s):  
Joost Dejaegher ◽  
Lien Solie ◽  
Zoé Hunin ◽  
Raf Sciot ◽  
David Capper ◽  
...  

Abstract Background Histologically classified Glioblastomas (GBM) can have different clinical behavior and response to therapy, for which molecular subclassifications have been proposed. We evaluated the relationship of epigenetic GBM subgroups with immune cell infiltrations, systemic immune changes during radiochemotherapy and clinical outcome. Methods 450K genome-wide DNA methylation was assessed on tumor tissue from 93 patients with newly diagnosed GBM, treated with standard radiochemotherapy and experimental immunotherapy. Tumor infiltration of T cells, myeloid cells and PD-1 expression were evaluated. Circulating immune cell populations and selected cytokines were assessed on blood samples taken before and after radiochemotherapy. Results Forty-two tumors had a mesenchymal, 27 a RTK II, 17 a RTK I and 7 an IDH DNA methylation pattern Mesenchymal tumors had the highest amount of tumor-infiltrating CD3+ and CD8+ T cells and IDH tumors the lowest. There were no significant differences for CD68+ cells, FoxP3+ cells and PD-1 expression between groups. Systemically, there was a relative increase of CD8+ T cells and CD8+ PD-1 expression and a relative decrease of CD4+ T cells after radiochemotherapy in all subgroups except IDH tumors. Overall survival was the longest in the IDH group (median 36 months), intermediate in RTK II tumors (27 months) and significantly lower in mesenchymal and RTK I groups (15.5 and 16 months respectively). Conclusions Methylation based stratification of GBM is related to T cell infiltration and survival, with IDH and mesenchymal tumors representing both ends of a spectrum. DNA methylation profiles could be useful in stratifying patients for immunotherapy trials.


Sign in / Sign up

Export Citation Format

Share Document