scholarly journals TIGIT/CD155 axis mediates resistance to immunotherapy in patients with melanoma with the inflamed tumor microenvironment

2021 ◽  
Vol 9 (11) ◽  
pp. e003134
Author(s):  
Shusuke Kawashima ◽  
Takashi Inozume ◽  
Masahito Kawazu ◽  
Toshihide Ueno ◽  
Joji Nagasaki ◽  
...  

BackgroundPatients with cancer benefit from treatment with immune checkpoint inhibitors (ICIs), and those with an inflamed tumor microenvironment (TME) and/or high tumor mutation burden (TMB), particularly, tend to respond to ICIs; however, some patients fail, whereas others acquire resistance after initial response despite the inflamed TME and/or high TMB. We assessed the detailed biological mechanisms of resistance to ICIs such as programmed death 1 and/or cytotoxic T-lymphocyte-associated protein 4 blockade therapies using clinical samples.MethodsWe established four pairs of autologous tumor cell lines and tumor-infiltrating lymphocytes (TILs) from patients with melanoma treated with ICIs. These tumor cell lines and TILs were subjected to comprehensive analyses and in vitro functional assays. We assessed tumor volume and TILs in vivo mouse models to validate identified mechanism. Furthermore, we analyzed additional clinical samples from another large melanoma cohort.ResultsTwo patients were super-responders, and the others acquired resistance: the first patient had a non-inflamed TME and acquired resistance due to the loss of the beta-2 microglobulin gene, and the other acquired resistance despite having inflamed TME and extremely high TMB which are reportedly predictive biomarkers. Tumor cell line and paired TIL analyses showed high CD155, TIGIT ligand, and TIGIT expression in the tumor cell line and tumor-infiltrating T cells, respectively. TIGIT blockade or CD155-deletion activated T cells in a functional assay using an autologous cell line and paired TILs from this patient. CD155 expression increased in surviving tumor cells after coculturing with TILs from a responder, which suppressed TIGIT+ T-cell activation. Consistently, TIGIT blockade or CD155-deletion could aid in overcoming resistance to ICIs in vivo mouse models. In clinical samples, CD155 was related to resistance to ICIs in patients with melanoma with an inflamed TME, including both primary and acquired resistance.ConclusionsThe TIGIT/CD155 axis mediates resistance to ICIs in patients with melanoma with an inflamed TME, promoting the development of TIGIT blockade therapies in such patients with cancer.

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 4005
Author(s):  
Simayijiang Aimaiti ◽  
Yohei Saito ◽  
Shuichi Fukuyoshi ◽  
Masuo Goto ◽  
Katsunori Miyake ◽  
...  

Seven new butanolides, peltanolides A–G (1–7), and two lignan glucosides, peltasides A (8) and B (9), along with eleven known compounds, 10–20, were isolated from a crude CH3OH/CH2Cl2 (1:1) extract of the fruit of Hernandia nymphaeifolia (Hernandiaceae). The structures of 1–9 were characterized by extensive 1D and 2D NMR spectroscopic and HRMS analysis. The absolute configurations of newly isolated compounds 1–9 were determined from data obtained by optical rotation and electronic circular dichroism (ECD) exciton chirality methods. Butanolides and lignan glucosides have not been isolated previously from this genus. Several isolated compounds were evaluated for antiproliferative activity against human tumor cell lines. Lignans 15 and 16 were slightly active against chemosensitive tumor cell lines A549 and MCF-7, respectively. Furthermore, both compounds displayed significant activity (IC50 = 5 µM) against a P-glycoprotein overexpressing multidrug-resistant tumor cell line (KB-VIN) but were less active against its parent chemosensitive cell line (KB).


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1235-1235
Author(s):  
Joo Hyun Lee ◽  
Cynthia R. Giver ◽  
Sravanti Rangaraju ◽  
Edmund K Waller

Abstract The uncontrolled proliferation of genetically mutated cells is the commonly understood mechanism for cancer growth and invasion, with accumulation of new mutations in daughter cells leading to clonal diversity of cancer derived from a single founding event. The genetic alterations are passed to new generations by cell division and vertical gene transfer. Viral transmission of oncogenes represents a known mechanism of lateral gene transfer in cancer initiation. Some experimental systems have also suggested that circulating DNA or micro-vesicles may contribute to lateral oncogene transfer in tumorigenesis. We hypothesized that interactions between leukemic cells and adjacent normal hematopoietic stem or progenitor cells may provide an alternative mechanism for the accumulation of mutated genes and the multiplicity of distinct clones in leukemia. To test this hypothesis, we performed experiments to determine whether tumorigenic properties could be transferred from a tumor cell line to normal mouse bone marrow cells using both in vivo and in vitro and systems. B6-GFP+ mice were injected i.v. with 200,000 C1498-Luc cells (a B6-derived NKT-cell-like mouse tumor cell line expressing luciferase and DSRed). Bioluminescent imaging was used to monitor the progression of tumor cell growth in recipients. At 1 month after tumor-cell inoculation, marrow from these mice was harvested and FACS-sorted for GFP+ cells (to eliminate C1498 cells), and then cultured on irradiated stromal cell layers in 96-well plates in a limiting dilution analysis for Poisson analysis of GFP+ clonogenic precursor frequency on day 9. On day 10, cells were harvested from culture and GFP+ cells resorted onto fresh stromal layers for second and third determinations of GFP+ clonogenic precursor frequency on days 15 and 18. As shown in Figure 1, the frequency of clonogenic precursors increased with each successive determination for marrow from C1498-injected mice, while control cultures from non-injected mice showed no increase in precursor frequency, suggesting that exposure to C1498 cells conferred a growth advantage to the marrow cells in the tumor-cell injected mice. Similar results were obtained using an in vitro system of co-culture using C1498 cells and GFP+ bone marrow cells, followed by serial rounds of GFP+ sorting and Poisson analysis, showing increases in clonogenic frequency over 5 successive sorts and re-cultures over a 2-month period, while control cultures showed decreased clonogenic frequencies over the course of the experiment. To confirm these observations in vivo, B6-GFP mice were injected with C1498-Luc and marrow was harvested after a month and sorted for GFP+ cells. The sorted marrow was transplanted into 11Gy-irradiated (FVB x B6albino)F1 recipients (5 x 106 cells per recipient, n=5). Control recipients were irradiated and transplanted with GFP+ marrow from non-injected donors. All recipients developed full hematopoietic engraftment with GFP+ cells. At 6 months post-transplant, a tumor was observed near the left shoulder of one of the recipients of C1498-exposed GFP+ marrow. Figure 2 shows IVIS GFP imaging of this mouse with the GFP+ tumor along with control animals. The tumor was not positive for luciferase expression. The mouse was sacrificed and the tumor excised and a portion was dissociated for flow cytometric analysis and culturing (with other segments reserved for subsequent histological and genetic analysis). Both GFP+ and non-GFP cells were found in the dissociated tumor cell suspension. The GFP+ cells were hematopoietic in origin (CD45+) and exhibited a mixed phenotype containing markers expressed on C1498 (DX5+) and myeloid lineage cells (CD11b+) as well as Sca-1, a stem cell marker. Cultures of the GFP+ tumor yielded a population of GFP+ mononuclear cells. These data are consistent with a model in which growth-promoting or transforming genes from cancer cells become incorporated within a healthy hematopoietic stem or progenitor cell, which contributes to the genetic diversity of the cancer through the initiation a new transformed clone. Genetic analysis with deep sequencing will compare the DNA sequences between the parental C1498 cell line, sorted populations of clonogenic GFP+ cells obtained from the in vitro and in vivo experiments, and the GFP+ tumor cells to confirm the transformation of healthy bone marrow hematopoietic stem cells with genetic sequences derived from the C1498 cells. Disclosures No relevant conflicts of interest to declare.


Science ◽  
1991 ◽  
Vol 254 (5029) ◽  
pp. 293-295
Author(s):  
SF Dowdy ◽  
CL Fasching ◽  
D Araujo ◽  
KM Lai ◽  
E Livanos ◽  
...  

Wilms tumor has been associated with genomic alterations at both the 11p13 and 11p15 regions. To differentiate between the involvement of these two loci, a chromosome 11 was constructed that had one or the other region deleted, and this chromosome was introduced into the tumorigenic Wilms tumor cell line G401. When assayed for tumor-forming activity in nude mice, the 11p13-deleted, but not the 11p15.5-p14.1-deleted chromosome, retained its ability to suppress tumor formation. These results provide in vivo functional evidence for the existence of a second genetic locus (WT2) involved in suppressing the tumorigenic phenotype of Wilms tumor.


2003 ◽  
Vol 35 (3) ◽  
pp. 204-211 ◽  
Author(s):  
Mercedes M. Leon-Blanco ◽  
Juan M. Guerrero ◽  
Russel J. Reiter ◽  
Juan R. Calvo ◽  
David Pozo

Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 972
Author(s):  
Gulam Mohmad Rather ◽  
Michael Anyanwu ◽  
Tamara Minko ◽  
Olga Garbuzenko ◽  
Zoltan Szekely ◽  
...  

Background: We tested the antitumor effects of a modified E2F peptide substituting D-Arg for L-Arg, conjugated to penetratin (PEP) against solid tumor cell lines and the CCRF-leukemia cell line, alone and in combination with pemetrexed or with cisplatin. For in-vivo studies, the peptide was encapsulated in PEGylated liposomes (PL-PEP) to increase half-life and stability. Methods: Prostate cancer (DU145 and PC3), breast cancer (MCF7, MDA-MB-468, and 4T1), lymphoma (CCRF-CEM), and non-small cell lung cancer (NSCLC) cell lines (H2009, H441, H1975, and H2228) were treated with D-Arg PEP in combination with cisplatin or pemetrexed. Western blot analysis was performed on the NSCLC for E2F-1, pRb, thymidylate synthase, and thymidine kinase. The H2009 cell line was selected for an in-vivo study. Results: When the PEP was combined with cisplatin and tested against solid tumor cell lines and the CCRF-CEM leukemia cell line, there was a modest synergistic effect. A marked synergistic effect was seen when the combination of pemetrexed and the PEP was tested against the adenocarcinoma lung cancer cell lines. The addition of the PEP to pemetrexed enhanced the antitumor effects of pemetrexed in a xenograft of the H2009 in mice. Conclusions: The D-Arg PEP in combination with cisplatin caused synergistic cell kill against prostate, breast, lung cancers, and the CCRF-CEM cell line. Marked synergy resulted when the D-Arg PEP was used in combination with pemetrexed against the lung adenocarcinoma cell lines. A xenograft study using the PL-PEP in combination with pemetrexed showed enhanced anti-tumor effects compared to each drug alone.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-6
Author(s):  
Ryan Bjordahl ◽  
John Goulding ◽  
Mochtar Pribadi ◽  
Robert Blum ◽  
Chiawei Chang ◽  
...  

Surface expression of the HLA-I related molecules MICA and MICB (MICA/B) in response to oncogenic and cellular stress acts as a natural anti-cancer immunosurveillance mechanism. The recognition of MICA/B by the activating immunoreceptor NKG2D, which is expressed by natural killer (NK) and T cell subsets, is responsible for the removal of many transformed and virally infected cells. However, tumors frequently evade NKG2D-mediated immunosurveillance by proteolytic shedding of MICA/B, which can inhibit NKG2D function and promote tumor immune escape. Recently, we demonstrated that monoclonal antibodies targeting the conserved, membrane-proximal α3 domain of MICA/B can prevent MICA/B shedding and enhance NK cell anti-tumor efficacy. With the goal of leveraging the ubiquity of MICA/B expression on malignant cells, we have developed a novel chimeric antigen receptor targeting the α3 domain of MICA/B (CAR-MICA/B) and are currently evaluating application of CAR-MICA/B in an off-the-shelf NK cell immunotherapy platform for both solid and hematopoietic tumor indications. Optimization of CAR-MICA/B design was performed by primary T cell transduction using a matrix of CAR spacers and ScFv heavy and light chain orientations. Six candidate CAR-MICA/B designs were screened in vitro against a panel of tumor cell lines and in vivo against the Nalm6 leukemia cell line engineered to express MICA (Nalm6-MICA). All tested constructs demonstrated MICA-specific in vitro activation and cytotoxicity as well as in vivo tumor control (Figure 1A). Additional studies utilizing the optimal CAR-MICA/B configuration demonstrated MICA/B-specific reactivity against a panel of solid and hematopoietic tumor cell lines in vitro, including melanoma, renal cell carcinoma, and lung cancer lines (Figure 1B). Further, CAR-MICA/B T cells were superior to NKG2D-CAR T cells in clearing A2058 melanoma cells in an in vivo xenograft metastasis model (Figure 1C). Although MICA/B expression has primarily been studied in the context of solid tumors, moderate MICA/B mRNA expression was identified in a number of hematopoietic tumor cell lines, including acute myeloid leukemia (AML) and multiple myeloma (MM) lines. Following the confirmation of surface MICA/B protein expression on a selection of MM and AML cell lines, we utilized MICA/B CAR primary T cells to further demonstrate MICA/B-specific activation and cytotoxicity and to confirm CAR-MICA/B targeting of hematological malignancies (Figure 1D). To further advance CAR-MICA/B development, we introduced the CAR-MICA/B construct into an induced pluripotent stem cell (iPSC) line designed for production of off-the-shelf natural killer (NK) cell immunotherapies. Using a panel of tumor cell lines expressing MICA/B, CAR-MICA/B iPSC-derived NK (iNK) cells displayed specific MICA reactivity, resulting in enhanced cytokine production, degranulation, and CAR-mediated cytotoxicity compared to CAR-negative iNK control cells (Figure 1E). In addition to MICA/B-specific cytotoxicity mediated by CAR, iNK cells also mediated innate cytotoxicity against cancer cells through endogenous NKG2D and other NK cell activating receptors, highlighting the multifaceted targeting capacity of CAR iNK cells. In order to isolate CAR-directed cytotoxicity from the iNK cells' innate anti-tumor capacity, an in vivo proof of concept study was performed using mouse B16-F10 melanoma cells engineered to express human MICA. In this model, iNK expressing CAR-MICA/B significantly reduced B16-F10-MICA liver and lung metastases from CAR-MICA/B iNK cells compared to CAR negative control cells, with reductions of the number of metastases by 87% in the lung (p<0.0001) and 93% in the liver (p<0.006) for CAR-MICA/B iNK cells vs non-CAR controls (Figure 1F). Additionally, CAR-MICA/B iNK cells were effective at controlling Nalm6-MICA progression in a disseminated leukemia model, suggesting potential application against both hematopoietic and solid tumors. Ongoing work is focused on extending these studies into disease-specific models of endogenous MICA/B expression to further advance CAR-MICA/B iNK cells in both solid and hematologic cancers. In summary, these preclinical data support the development and translation of an off-the-shelf NK cell immunotherapy targeting the conserved α3 domain of MICA/B with potential therapeutic application to multiple hematopoietic and solid tumor types. Figure 1 Disclosures Bjordahl: Fate Therapeutics: Current Employment. Goulding:Fate Therapeutics: Current Employment. Blum:Fate Therapeutics: Current Employment. Chang:Fate Therapeutics: Current Employment. Wucherpfennig:Fate Therapeutics: Research Funding. Chu:Fate Therapeutics, Inc.: Current Employment, Current equity holder in publicly-traded company; Roche Holding AG: Current equity holder in publicly-traded company. Chu:Fate Therapeutics, Inc: Current Employment. Gaidarova:Fate Therapeutics, Inc: Current Employment. Liu:Fate Therapeutics: Current Employment. Sikaroodi:Fate Therapeutics: Current Employment. Fong:Fate Therapeutics: Current Employment. Huffman:Fate Therapeutics: Current Employment. Lee:Fate Therapeutics, Inc.: Current Employment. Valamehr:Fate Therapeutics, Inc: Current Employment, Current equity holder in publicly-traded company.


2021 ◽  
Vol 17 (10) ◽  
pp. 2062-2070
Author(s):  
Hui Ao ◽  
Hao-Wen Li ◽  
Li-Kang Lu ◽  
Jing-Xin Fu ◽  
Mei-Hua Han ◽  
...  

Annonaceous acetogenins (ACGs) have attracted much attention because of excellent antitumor activity. However, the lack of selectivity and the accompanying serious toxicity have eventually prevented ACGs from entering clinical application. To decrease the side effects of ACGs, the cytotoxicity of ACGs on 10 types of tumor cell lines was investigated by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) test to identify one that was very sensitive to ACGs. Meanwhile, ACGs nanoparticles (ACGs-NPs) were prepared using poloxamer 188 (P188) as an excipient so as to solve the problem of poor solubility and the in vivo delivery of ACGs. ACG-NPs were 163.9±2.5 nm in diameter, negatively charged, and spherical with a high drug loading content (DLC) of 44.9±1.2%. MTS assays demonstrated that ACGs had strong cytotoxicity against JEG-3, HeLa, SiHa, MCF-7, A375, A2058, A875, U-118MG, LN- 229, and A431 cells, among which JEG-3 cell line was extremely sensitive to ACGs with a 50% inhibitory concentration (IC50) value of 0.26 ng/mL, a very encouraging discovery. ACGs-NPs demonstrated very good dose-dependent antitumor efficacy in a broad range of 45?1200 μg/kg on JEG-3 tumor-bearing mice. At a very low dose (1200 μg/kg), ACGs-NPs achieved a high tumor inhibition rate (TIR) of 77.6% through oral administration, displaying a significant advantage over paclitaxel (PTX) injections that are currently used as first-line anti-choriocarcinoma drugs. In the acute toxicity study, the half lethal dose (LD50) of ACGs-NPs was 135.5 mg/kg, which was over 100 times as of the effective antitumor dose, indicating good safety of ACGs-NPs. ACGs-NPs show promise as a new type of and potent anti-choriocarcinoma drug in the future.


Sign in / Sign up

Export Citation Format

Share Document