scholarly journals Anti-Tumor Effects of a Penetratin Peptide Targeting Transcription of E2F-1, 2 and 3a Is Enhanced When Used in Combination with Pemetrexed or Cisplatin

Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 972
Author(s):  
Gulam Mohmad Rather ◽  
Michael Anyanwu ◽  
Tamara Minko ◽  
Olga Garbuzenko ◽  
Zoltan Szekely ◽  
...  

Background: We tested the antitumor effects of a modified E2F peptide substituting D-Arg for L-Arg, conjugated to penetratin (PEP) against solid tumor cell lines and the CCRF-leukemia cell line, alone and in combination with pemetrexed or with cisplatin. For in-vivo studies, the peptide was encapsulated in PEGylated liposomes (PL-PEP) to increase half-life and stability. Methods: Prostate cancer (DU145 and PC3), breast cancer (MCF7, MDA-MB-468, and 4T1), lymphoma (CCRF-CEM), and non-small cell lung cancer (NSCLC) cell lines (H2009, H441, H1975, and H2228) were treated with D-Arg PEP in combination with cisplatin or pemetrexed. Western blot analysis was performed on the NSCLC for E2F-1, pRb, thymidylate synthase, and thymidine kinase. The H2009 cell line was selected for an in-vivo study. Results: When the PEP was combined with cisplatin and tested against solid tumor cell lines and the CCRF-CEM leukemia cell line, there was a modest synergistic effect. A marked synergistic effect was seen when the combination of pemetrexed and the PEP was tested against the adenocarcinoma lung cancer cell lines. The addition of the PEP to pemetrexed enhanced the antitumor effects of pemetrexed in a xenograft of the H2009 in mice. Conclusions: The D-Arg PEP in combination with cisplatin caused synergistic cell kill against prostate, breast, lung cancers, and the CCRF-CEM cell line. Marked synergy resulted when the D-Arg PEP was used in combination with pemetrexed against the lung adenocarcinoma cell lines. A xenograft study using the PL-PEP in combination with pemetrexed showed enhanced anti-tumor effects compared to each drug alone.

Oncology ◽  
1988 ◽  
Vol 45 (3) ◽  
pp. 206-209 ◽  
Author(s):  
Yuji Maeda ◽  
Tohru Hirai ◽  
Hideyuki Yamato ◽  
Noriko Kobori ◽  
Ken-ichi Matsunaga ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5005
Author(s):  
Boris Jakopovic ◽  
Nada Oršolić ◽  
Sandra Kraljević Pavelić

Due to frequent drug resistance and/or unwanted side-effects during conventional and targeted cancer treatments, development of multi-target therapies is an important research field. Medicinal mushrooms’ isolated specific compounds and mushroom extracts have been already proven as non-toxic multi-target inhibitors of specific oncogenic pathways, as well as potent immunomodulators. However, research on antitumor effects of multiple-species extract mixtures was limited so far. The aim of this study was therefore, a study of medicinal mushroom preparations AGARIKON.1 and AGARIKON PLUS on colorectal cell lines in vitro and colorectal mice model in vivo. We found a significant antiproliferative and pro-apoptotic effect of tested medicinal mushroom preparations on colorectal (HCT-116, SW620) tumor cell lines, while the effect on human fibroblast cell line (WI-38) was proliferative emphasizing a specificity towards tumor cell lines. We further investigated the effect of the medicinal mushroom preparations AGARIKON.1 and AGARIKON PLUS in various combinations with conventional cytostatic drug 5-fluorouracil in the advanced metastatic colorectal cancer mouse model CT26.WT. AGARIKON.1 and AGARIKON PLUS exhibited immunostimulatory and antiangiogenic properties in vivo which resulted in significantly increased survival and reduction in tumor volume. The antitumor effects of AGARIKON.1 and AGARIKON PLUS, with or without 5-fluorouracil, are based on M1 macrophage polarization enhancement, inhibition of M2 and tumor-associated macrophage (TAM) polarization, effects on T helper cell Th1/Th2/Th17 cytokine profiles, direct inhibition of CT26.WT tumor growth, inhibition of vascular endothelial growth factors (VEGF) and metalloproteinases 2 and 9 (MMP-2 and MMP-9) modulation. The administration of AGARIKON.1 and AGARIKON PLUS did not show genotoxic effect. This data provides good basis for an expanded translational study.


2018 ◽  
Vol 18 (4) ◽  
pp. 556-564 ◽  
Author(s):  
Nikhil R. Madadi ◽  
Narsimha R. Penthala ◽  
Amit Ketkar ◽  
Robert L. Eoff ◽  
Vicenta Trujullo-Alonso ◽  
...  

Background: Naphthalene is a good structural replacement for the isovanillin moiety (i.e. the 3- hydroxy-4-methoxyphenyl unit) in the combretastatin A-4 molecule, a natural product structurally related to resveratrol, which consistently led to the generation of highly cytotoxic naphthalene analogues when combined with a 3,4,5-trimethoxyphenyl or related aromatic system. Also, the naphthalene ring system is present in many current drug molecules that are utilized for anti-tumor, anti-arrhythmia and antioxidant therapy. Objective: In our continuing quest to improve the potencies of naturally occurring anti-cancer molecules through chemical modification, we have now synthesized a small library of 2-naphthaleno trans- stilbenes and cyanostilbenes that are structurally related to both resveratrol and DMU-212, and have evaluated these novel analogs against a panel of 54 human tumor cell lines. Method: A series of 2-naphthaleno-containing trans-stilbenes 3a-3h (Scheme 1) were synthesized by Wittig reaction of a variety of aromatic substituted benzyl-triphenylphosphonium bromide reactants with 2- naphthaldehyde using n-BuLi as a base in THF. A second series of 2-naphthaleno trans-cyanostilbenes analogs 5a-5h was synthesized by reaction of 2-naphthaldehyde (2; 1 mmol) with an appropriately substituted 2- phenylacrylonitrile 4a-4h; 1 mmol) in 5% sodium methoxide/methanol. The reaction mixture was stirred at room temperature for 2-3 hours and the reaction allowed to go to completion (TLC monitoring), during which time the desired product precipitated out of the solution as a solid. The resulting precipitate was filtered off, washed with water and dried to yield the desired compound in yields ranging from 70-95% (Scheme 2). Results: The percentage growth inhibition of 54 human cancer cell lines in a primary NCI screen after exposure to compounds 3a, 3d, 5b and 5c was carried out. The results showed that only compounds 5b and 5c met the criteria for subsequent testing to determine growth inhibition values (GI50) in dose-response studies. At 10-5 M concentration, compounds 5b and 5c exhibited cytotoxic activity against leukemia cell lines HL-60(TB) and SR, lung cancer cell line NCI-H522, colon cancer cell lines COLO 205 and HCT-116, CNS-cancer cell line SF-539, melanoma cell line MDA-MB-435, and breast cancer cell line BT-549. The naphthalene trans-stilbene analogue 3a, exhibited significant growth inhibition against only one cell line, melanoma cell line MDA-MB-435 (96 % growth inhibition). Compound 3d was inactive in the 10-5 M single dose screen. Conclusion: We have synthesized a small set of novel 2-naphthaleno stilbenes and cyanostilbenes and evaluated several of these compounds for their anticancer properties against a panel of 54 human tumor cell lines. The most active analogs, 5b and 5c, showed significantly improved growth inhibition against the human cancer cells in the NCI panel when compared to DMU-212. Of these compounds, analog 5c was found to be the most potent anticancer agent and exhibited significant growth inhibitory effects against COLO 205, CNS SF 539 and melanoma SK-MEL 5 and MDA-MB-435 cell lines with GI50 values ≤ 25 nM. Analog 5b also exhibited GI50 values in the range 25-41 nM against CNS SF 295 and melanoma MDA-MB-435 and UACC-62 cell lines. Compounds 5b and 5c were also cytotoxic towards the MV4-11 leukemia cell line with LD50 value of 450 nM and 200 nM, respectively, and demonstrated >50% inhibition of tubulin polymerization at concentrations below their LD50 values in these cells. In silico docking studies suggest that compounds 5b and 5c bind favorably at the colchicine- binding pocket of the tubulin dimer, indicating that both 5b and 5c may inhibit tubulin polymerization through a mechanism similar to that exhibited by colchicine. Derivative 5c demonstrated more favorable binding based on the docking score and buried surface area, as compared to compound 5b, in agreement with the higher observed potency of 5c against a broader range of tumor cell lines. Based on these results, analog 5c is considered to be a lead compound for further optimization as a clinical candidate for treating a variety of cancers.


Author(s):  
Putthiporn Khongkaew ◽  
Phanphen Wattanaarsakit ◽  
Konstantinos I. Papadopoulos ◽  
Watcharaphong Chaemsawang

Background: Cancer is a noncommunicable disease with increasing incidence and mortality rates both worldwide and in Thailand. Its apparent lack of effective treatments is posing challenging public health issues. Introduction: Encouraging research results indicating probable anti-cancer properties of the Delonix regia flower extract (DRE) have prompted us to evaluate the feasibility of developing a type of product for future cancer prevention or treatment. Methods and Results: In the present report, using High Performance Liquid Chromatography (HPLC), we demonstrate in the DRE, the presence of high concentrations of three identifiable flavonoids, namely rutin 4.15±0.30 % w/w, isoquercitrin 3.04±0.02 %w/w, and myricetin 2.61±0.01 % w/w respectively while the IC50 of DPPH and ABTS assay antioxidation activity was 66.88±6.30 µg/ml and 53.65±7.24 µg/ml respectively. Discussion: Our cancer cell line studies using the MTT assay demonstrated DREs potent and dose dependent inhibition of murine leukemia cell line (P-388: 35.28±4.07% of cell viability remaining), as well as of human breast adenocarcinoma (MCF-7), human cervical carcinoma (HeLa), human oral cavity carcinoma (KB), and human colon carcinoma (HT-29) cell lines in that order of magnitude. Conclusion: Three identifiable flavonoids (rutin, isoquercitrin and myricetin) with high antioxidation activity and potent and dose dependent inhibition of murine leukemia cell line and five other cancer cell lines were documented in the DRE. The extract’s lack of cytotoxicity in 3 normal cell lines is a rare advantage not usually seen in current antineoplastic agents. Yet another challenge of the DRE was its low dissolution rate and long-term storage stability, issues to be resolved before a future product can be formulated.


1992 ◽  
Vol 23 (4) ◽  
pp. 891-897 ◽  
Author(s):  
Amato J. Giaccia ◽  
Elizabeth A. Auger ◽  
Albert Koong ◽  
David J. Terris ◽  
Andrew I. Minchinton ◽  
...  

Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 793-800 ◽  
Author(s):  
RM Lemoli ◽  
T Igarashi ◽  
M Knizewski ◽  
L Acaba ◽  
A Richter ◽  
...  

Abstract We evaluated the potential role of photoradiation therapy with a benzoporphyrin derivative, monoacid ring A (BPD-MA), and dihematoporphyrin ether (DHE), for the ex vivo purging of residual tumor cells from autologous bone marrow (BM) grafts. BPD-MA and DHE photosensitizing activity was tested against two human large-cell lymphoma cell lines and colony-forming unit-leukemia (CFU-L) derived from patients with acute myelogenous leukemia (AML). In mixing experiments, 4-log elimination of tumor cell lines was observed after 1 hour of incubation with 75 ng/mL of BPD-MA or 30 minutes of treatment with 12.5 micrograms/mL of DHE followed by white light exposure. By comparison, using the same concentration of BPD-MA, the mean recovery of normal BM progenitors was 4% +/- 0.8% (mean +/- SD) for granulocyte- macrophage colony-forming unit (CFU-GM) and 5% +/- 0.8% for burst- forming unit-erythroid (BFU-E). Similarly, DHE treatment resulted in the recovery of 5.2% +/- 2% and 9.8% +/- 3% of CFU-GM and BFU-E, respectively. Furthermore, equivalently cytotoxic concentrations of both DHE and BPD-MA and light were found not to kill normal pluripotent stem cells in BM, as demonstrated by their survival in two-step long- term marrow culture at levels equal to untreated controls. The T- lymphoblastic leukemia cell line CEM and its vinblastine (VBL)- resistant subline CEM/VBL, along with the acute promyelocyte leukemia cell line HL-60 and its vincristine (VCR)-resistant subline HL-60/VCR, were also tested. BPD-MA at 75 ng/mL was able to provide a greater than 4-log elimination of the drug-sensitive cell lines, but only a 34% and 55% decrease of the drug-resistant HL-60/VCR and CEM/VBL cell lines, respectively. On the contrary, 12.5 micrograms/mL of DHE reduced the clonogenic growth of all the cell lines by more than 4 logs. Further experiments demonstrated decreased uptake of both BPD-MA and DHE by the resistant cell lines. However, all the cell lines took up more DHE than BPD-MA under similar experimental conditions. Our results demonstrate the preferential cytotoxicity of BPD-MA and DHE toward neoplastic cell lines and CFU-L from AML patients. In addition, DHE was slightly more effective in purging tumor cells expressing the p-170 glycoprotein. These results suggest that photoradiation with DHE would be useful for in vitro purging of residual drug-resistant leukemia and lymphoma cells.


2011 ◽  
Author(s):  
J Jay Boniface ◽  
Vijay R. Baichwal ◽  
Daniel M. Cimbora ◽  
Lynn DeMie ◽  
Tracey C. Fleischer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document