scholarly journals 850 Dual blockade of the EP2 and EP4 PGE2 receptors with TPST-1495 is an optimal approach for drugging the prostaglandin pathway

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A891-A891
Author(s):  
Brian Francica ◽  
Justine Lopez ◽  
Anja Holtz ◽  
Dave Freund ◽  
Dingzhi Wang ◽  
...  

BackgroundProstaglandin E2 (PGE2) is a bioactive lipid produced by tumor cells that drives disease progression through stimulating tumor proliferation, enhancing angiogenesis and suppressing immune function in the TME.1 PGE2 is also a mediator of adaptive resistance to immune checkpoint inhibitor therapy via the upregulation of cyclooxygenase-2 (COX-2). While the role of PGE2 signaling in cancer is clear, how best to inhibit PGE2 for cancer treatment remains under investigation. Inhibition of COX-1 and/or COX-2 has shown promising results in observational studies and meta-analyses, but inconsistent results in prospective studies. PGE2 signals through four receptors, EP1-4, that are variably expressed on tumor and immune cells and have distinct biological activities. The EP2/EP4 receptors signal through cAMP and drive pro-tumor activities, while EP1/EP3 receptors signal through calcium flux and IP3 and drive immune activation and inflammation. While COX-2 and single EP inhibitors continue to be developed, the nature of PGE2 signaling supports our rationale to inhibit PGE2 by dual antagonism of the pro-tumor EP2/EP4 receptors, while sparing the pro-immune EP1/EP3 receptors.MethodsWe utilized human and murine whole blood to perform in vitro characterization of PGE2/inhibitor activity. In vivo, CT26 tumors and APCmin/+ mice were used to model CRC and measure immune endpoints.ResultsIn mouse and human whole blood assays, dual blockade of EP2 and EP4 receptors with TPST-1495 reversed PGE2-mediated suppression of LPS induced TNF-α, while EP4 receptor antagonists were unable to block suppression at higher PGE2 concentrations. Similarly, in murine and human T cells in vitro, TPST-1495 inhibited PGE2-mediated suppression, resulting in a significant increase of IFN-γ production in response to stimulation with cognate peptide Ag. In vivo, TPST-1495 therapy alone also significantly reduced tumor outgrowth in CT26 tumor bearing mice, correlated with increased tumor infiltration by NK cells, CD8+ T cells, AH1-specific CD8+ T cells, and DCs. The induced NKp46+CD4-CD8- cell population appeared to have an important role in TPST-1495 efficacy, as significant anti-tumor activity was observed in murine models lacking T Cells, particularly CT26 tumor-bearing RAG2-/- mice. TPST-1495 monotherapy demonstrated a decrease of both the intestinal tumor size and number in Adenomatous Polyposis (APCmin/+) mice, as compared to a single EP4 antagonist.ConclusionsTPST-1495 is a potent inhibitor of PGE2 mediated immune suppression and is currently being evaluated in an ongoing Phase 1 first-in-human study (NCT04344795) to characterize PK, PD, safety, and to identify a recommended phase 2 dose for expansion cohorts in key indications and biomarker selected patients.ReferenceZelenay S, van der Veen AG, Böttcher JP, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 2015;162(6):1257–70. doi: 10.1016/j.cell.2015.08.015

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A630-A630
Author(s):  
Seungho Wang ◽  
Yi Na Yoon ◽  
Mi kwon Son ◽  
Soo Jung Kim ◽  
Bo Ram Lee ◽  
...  

BackgroundBR101801 is an inhibitor of PI3K γ/δ and DNA-PK. It has received clinical approval from the U.S. FDA as an anticancer drug candidate, and phase 1a/1b is ongoing in the U.S. and South Korea. According to the prior studies PI3K γ/δ inhibition exhibits anticancer immune effects by changing the tumor microenvironment [1]. In addition, ionizing radiation (IR) activates the immune response by causing the destroyed cells to act as antigens [2]. Therefore, the combination of BR101801 and IR can induce cancer cell death and amplify anticancer immune effects. This study aims to demonstrate efficacy of the BR101801 as a potent cancer immunotherapy.MethodsThe enzymatic potency of PI3K isotype and DNA-PK was analyzed by Eurofins. The effects of BR101801 on cell viability were evaluated in 4T1 (breast cancer) and CT-26 (colon cancer) cells for 72 h using WST-8 assay. For in vivo studies, the tumor (4T1 or CT-26)-bearing syngeneic mice were treated with BR101801. To evaluate the synergistic effect, CT-26 tumor-bearing syngeneic mice were treated with vehicle, BR101801, IR (2 Gy or 7.5 Gy), and BR101801 + IR. Immune cells from the spleen or tumor were quantified by flow cytometry.ResultsIn vitro selectivity and target potency of BR101801 on different PI3K isotypes and DNA-PK were studied in a cell-free system. The biochemical IC50 values of BR101801 for PI3K -γ, -δ, and DNA-PK were 15 nM, 2 nM, and 6 nM, respectively. In vitro 50% of maximal inhibition of cell proliferation (GI50) in 4T1 and CT26 cell lines were both above 10 μM. In 4T1 and CT-26 syngeneic models, BR101801 showed the highest tumor inhibitor efficacy (Figure 1). In particular, regulatory T cells (Tregs) & Myeloid derived suppressor cells (MDSC) were decreased and CD8+ T cells were increased in the spleens isolated from the tumor-bearing mice. Compared with other PI3K inhibitors, BR101801 had the highest efficacy, confirming that it changes the immune microenvironment. Moreover, BR101801 was synergistic in combination with 2 Gy or 7.5 Gy of IR in the syngeneic model. Notably, Tregs & Macrophage2 were decreased and CD8+ T cells were increased in the tumor tissue, confirming that the anticancer efficacy.Abstract 600 Figure 1Synergistic effect with ionizing radiation In VivoThe combination of BR101801 and ionising radiation showed synergistic effects in the CT-26 Syngeneic model. BR101801 increases anti-cancer immune cells, CD8 + T cells, and decreases immune suppressor cells Tregs and macrophages through a combination of radiation, resulting in immuno-cancer effects.ConclusionsBR101801 demonstrated an anticancer immune effect by changing the tumor microenvironment and showed synergistic effects with radiation combination therapy. We will confirm the anticancer immunity effect in ongoing clinical trials.ReferencesOkkenhaug K, Graupera M, Vanhaesebroeck B. Targeting PI3K in Cancer: Impact on Tumor Cells, Their Protective Stroma, Angiogenesis, and Immunotherapy. Cancer Discov. 2016; 10: 1090–1105.McKelvey K, Hudson A, Back M, Eade T, Diakos C. Radiation, inflammation and the immune response in cancer. Mammalian Genome. 2018;9:843–865Ethics ApprovalThe protocol and any amendment(s) or procedures involving the care and use of animals in this study were reviewed and approved by the Institutional animal Car and Use Committee (IACUC) of BoRyung Pharm. prior to conduct.[Approval number:BR18130]


2002 ◽  
Vol 197 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Melanie S. Vacchio ◽  
Richard J. Hodes

Whereas ligation of CD28 is known to provide a critical costimulatory signal for activation of CD4 T cells, the requirement for CD28 as a costimulatory signal during activation of CD8 cells is less well defined. Even less is known about the involvement of CD28 signals during peripheral tolerance induction in CD8 T cells. In this study, comparison of T cell responses from CD28-deficient and CD28 wild-type H-Y–specific T cell receptor transgenic mice reveals that CD8 cells can proliferate, secrete cytokines, and generate cytotoxic T lymphocytes efficiently in the absence of CD28 costimulation in vitro. Surprisingly, using pregnancy as a model to study the H-Y–specific response of maternal T cells in the presence or absence of CD28 costimulation in vivo, it was found that peripheral tolerance does not occur in CD28KO pregnants in contrast to the partial clonal deletion and hyporesponsiveness of remaining T cells observed in CD28WT pregnants. These data demonstrate for the first time that CD28 is critical for tolerance induction of CD8 T cells, contrasting markedly with CD28 independence of in vitro activation, and suggest that the role of CD28/B7 interactions in peripheral tolerance of CD8 T cells may differ significantly from that of CD4 T cells.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A3.2-A4
Author(s):  
J Grün ◽  
I Piseddu ◽  
C Perleberg ◽  
N Röhrle ◽  
S Endres ◽  
...  

BackgroundUnmethylated CpG-DNA is a potent ligand for the endosomal Toll-like-receptor-9, important for the immune activation to pathogen-associated molecules.1 CpG and other TLR-ligands show effective immunotherapeutic capacities in cancer treatment by inducing an antitumorigenic immunity.2 They are able to reduce tumor progression by reduction of intratumoral secretion of the immunoregulating chemokine CCL223 and subsequent recruitment of immunosuppressive regulatory T cells (Treg), which express CCR4 the only so far known receptor for CCL22.4 Our recent work has shown that CCL22 secretion by dendritic cells (DC) in the lymph node, mediates tolerance by inducing DC-Treg contacts.5 Indeed, in the absence of CCL22, immune responses to vaccination were stronger and resulted in tumor rejection.6 Therefore, we are aiming to investigate the effects of TLR-ligands on systemic CCL22 levels, elucidating all involved mechanisms to identify new targets for cancer immunotherapy.Materials and MethodsT, B and CD11c+ DCs of wildtype (wt) and RAG1-/- mice were isolated from splenocytes by magnetic-activated cell sorting for in vitro assays. Different co-cultures were incubated with CpG and GM-CSF, known as an CCL22 inducer.5 For in vivo experiments, wt mice were treated with CpG, R484 or poly(I:C) alone and in combination with GM-CSF. CCL22-levels in a number of organs were analyzed.ResultsAnalyzing the different immune cell compartments in vitro, we found that DCs in whole splenocytes secrete CCL22 during culture while DC cultured alone showed no CCL22 secretion. When treated with CpG, CCL22-levels were reduced in splenocytes, while it was induced in DC culture alone. The same results were seen when RAG splenocytes, that lack functional B and T cells, were cultured with CpG. CpG treated B cells were able to suppress CCL22 secretion by DC unlike T cells alone. Co-cultures of T and B cells treated with CpG, however, induced the strongest CCL22 suppression in DC. In vivo, we could show that all TLR ligands tested reduced CCL22 in a number of organs significantly. Furthermore, CpG showed the strongest suppression of CCL22 even in the presence of the CCL22 inducer GM-CSF.5ConclusionsWe could show that B cells with T cells mediate CCL22 suppression by TLR ligands. The fact that CpG was able to reduce CCL22 levels even in the presence of the inducer GM-CSF demonstrates the potent CCL22 suppressive capacity of TLR ligands.ReferencesO’Neill LA, et al. The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60.Rothenfusser S, et al. Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 2003;5(2):98–106.Wang S, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016;113(46): E7240–E7249.Rapp M, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019;216(5):1170–1181.Piseddu I, et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J Immunol 2020;205(8):2056–2065.Anz D, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 2015;75(21):4483–93.Disclosure InformationJ. Grün: None. I. Piseddu: None. C. Perleberg: None. N. Röhrle: None. S. Endres: None. D. Anz: None.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Anna Cole ◽  
Guillermo Rangel RIvera ◽  
Aubrey Smith ◽  
Megan Wyatt ◽  
Brandon Ware ◽  
...  

BackgroundIL-21 enhances the anti-tumor capacity of adoptively transferred CD8+ T cells, while IL-2 and IL-15 impair T cell immunity by driving their expansion to a more differentiated status. Yet, these cytokines can act on many different immune cells. Given the potency of IL-21, we tested if this cytokine directly augments T cells or rather if it enhances other immune cells in the culture that indirectly improves T cell therapy.MethodsTo test this question, splenocytes from pmel-1 transgenic mice were used, as all CD8+ T cells express a transgenic TCR specific for tumor-antigen gp10025–33 overexpressed on melanoma. We then peptide activated naïve CD8+ T cells enriched or not from the spleen of pmel-1 mice and expanded them in the presence of IL-21 or IL-2 (10 ng/mL) for four days. Expanded pmel-1 from these various cultures were then restimulated with irradiated splenocytes pulsed with gp10025–33 and grown an additional seven days with IL-2 (10 ng/mL), irrespective of their initial cytokine condition. The in vitro memory phenotype, exhaustion profile, and cytokine secretion of these cultures were then assayed. Furthermore, mice bearing B16KVP melanoma tumors were infused with pmel-1 T cells expanded via these various approaches and compared for their relative capacity to engraft, persist, and regress tumor in vivo.ResultsInterestingly, we discovered that IL-21-treated T cells generated from bulk splenocytes are phenotypically and functionally distinct from IL-21-treated isolated T cells. Upon restimulation, IL-21-treated T cells from bulk splenocytes exhibited an exhausted phenotype that was like anergic IL-2-treated T cells. Moreover, few cells expressed CD62L but expressed heightened markers of suppression, including TIM3, PD-1, and EOMES. Moreover, they produced more effector molecules, including granzyme B and IFN-gamma. In vivo IL-21-treated T cells expanded from bulk splenocytes engrafted and persisted poorly, in turn mediating suboptimal regression of melanoma. Conversely, IL-21 dramatically bolstered the engraftment and antitumor activity of T cells only if they were first isolated from the spleen prior to their expansion and infusion into the animal.ConclusionsCollectively, our data shows that IL-21 may improve ACT therapy best when used directly on antitumor CD8+ T cells. Further studies will illuminate the mechanism behind this striking difference and determine whether other cell subsets reactive to IL-21 cause T cell dysfunction and/or reduced bioavailability. These findings are important for defining the best culture conditions in which to use IL-21 for ACT.AcknowledgementsWe would like to acknowledge Emory University, The Winship Cancer Institute, and the Pediatrics/Winship Flow Cytometry Core.Ethics ApprovalAll animal procedures were approved by the Institutional Animal Care and Use Committee of Emory University, protocol number 201900225.


Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


2018 ◽  
Vol 215 (9) ◽  
pp. 2265-2278 ◽  
Author(s):  
Colleen M. Lau ◽  
Ioanna Tiniakou ◽  
Oriana A. Perez ◽  
Margaret E. Kirkling ◽  
George S. Yap ◽  
...  

An IRF8-dependent subset of conventional dendritic cells (cDCs), termed cDC1, effectively cross-primes CD8+ T cells and facilitates tumor-specific T cell responses. Etv6 is an ETS family transcription factor that controls hematopoietic stem and progenitor cell (HSPC) function and thrombopoiesis. We report that like HSPCs, cDCs express Etv6, but not its antagonist, ETS1, whereas interferon-producing plasmacytoid dendritic cells (pDCs) express both factors. Deletion of Etv6 in the bone marrow impaired the generation of cDC1-like cells in vitro and abolished the expression of signature marker CD8α on cDC1 in vivo. Moreover, Etv6-deficient primary cDC1 showed a partial reduction of cDC-specific and cDC1-specific gene expression and chromatin signatures and an aberrant up-regulation of pDC-specific signatures. Accordingly, DC-specific Etv6 deletion impaired CD8+ T cell cross-priming and the generation of tumor antigen–specific CD8+ T cells. Thus, Etv6 optimizes the resolution of cDC1 and pDC expression programs and the functional fitness of cDC1, thereby facilitating T cell cross-priming and tumor-specific responses.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiangyu Wang ◽  
Fengmian Wang ◽  
Zhi-Gang Zhang ◽  
Xiao-Mei Yang ◽  
Rong Zhang ◽  
...  

Serine/threonine protein kinase-3 (STK3) is a critical molecule of the Hippo pathway but little is known about its biological functions in the ovarian cancer development. We demonstrated the roles of STK3 in ovarian cancer. Existing databases were used to study the expression profile of STK3. STK3 was significantly downregulated in OC patients, and the low STK3 expression was correlated with a poor prognosis. In vitro cell proliferation, apoptosis, and migration assays, and in vivo subcutaneous xenograft tumor models were used to determine the roles of STK3. The overexpression of STK3 significantly inhibited cell proliferation, apoptosis, and migration of ovarian cancer cells in vitro and tumor growth in vivo. Bisulfite sequencing PCR analysis was performed to validate the methylation of STK3 in ovarian cancer. RNA sequencing and gene set enrichment analysis (GSEA) were used to compare the transcriptome changes in the STK3 overexpression ovarian cancer and control cells. The signaling pathway was analyzed by western blotting. STK3 promoted the migration of CD8+ T-cells by activating nuclear transcription factor κB (NF-κB) signaling. STK3 is a potential predictor of OC. It plays an important role in suppressing tumor growth of ovarian cancer and in chemotaxis of CD8+ T-cells.


2020 ◽  
Vol 79 (7) ◽  
pp. 951-959 ◽  
Author(s):  
Paul Régnier ◽  
Alexandre Le Joncour ◽  
Anna Maciejewski-Duval ◽  
Anne-Claire Desbois ◽  
Cloé Comarmond ◽  
...  

ObjectiveTakayasu’s arteritis (TAK) is a large vessel vasculitis with important infiltration of proinflammatory T cells in the aorta and its main branches, but its aetiology is still unknown. Our work aims to explore the involvement of Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signalling pathway in proinflammatory T cells differentiation and disease activity of TAK.MethodsWe analysed transcriptome and interferons gene signatures of fluorescence-activated cell sorting (FACS-sorted) CD4+ and CD8+ T cells from healthy donors (HD) and in 25 TAK (median age of 37.6 years including 21 active TAK with National Institutes of Health (NIH) score >1). Then we tested, in vitro and in vivo, the effects of JAK inhibitors (JAKinibs) in TAK.ResultsTranscriptome analysis showed 248 and 432 significantly dysregulated genes for CD4+ and CD8+ samples between HD and TAK, respectively. Among dysregulated genes, we highlighted a great enrichment for pathways linked to type I and type II interferons, JAK/STAT and cytokines/chemokines-related signalling in TAK. We confirmed by Real Time Reverse Transcription Polymerase Chain Reaction (RT-qPCR) the upregulation of type I interferons gene signature in TAK as compared with HD. JAKinibs induced both in vitro and in vivo a significant reduction of CD25 expression by CD4+ and CD8+ T cells, a significant decrease of type 1 helper T cells (Th1) and Th17 cells and an increase of Tregs cells in TAK. JAKinibs also decreased C reactive protein level, NIH score and corticosteroid dose in TAK patients.ConclusionsJAK/STAT signalling pathway is critical in the pathogenesis of TAK and JAKinibs may be a promising therapy.


1990 ◽  
Vol 172 (4) ◽  
pp. 1065-1070 ◽  
Author(s):  
Y Kawabe ◽  
A Ochi

The cellular basis of the in vitro and in vivo T cell responses to Staphylococcus enterotoxin B (SEB) has been investigated. The proliferation and cytotoxicity of V beta 8.1,2+,CD4+ and CD8+ T cells were observed in in vitro response to SEB. In primary cytotoxicity assays, CD4+ T cells from control spleens were more active than their CD8+ counterparts, however, in cells derived from SEB-primed mice, CD8+ T cells were dominant in SEB-specific cytotoxicity. In vivo priming with SEB abrogated the response of V beta 8.1,2+,CD4+ T cells despite the fact that these cells exist in significant number. This SEB-specific anergy occurred only in V beta 8.1,2+,CD4+ T cells but not in CD8+ T cells. These findings indicate that the requirement for the induction of antigen-specific anergy is different between CD4+ and CD8+ T cells in post-thymic tolerance, and the existence of coanergic signals for the induction of T cell anergy is suggested.


Sign in / Sign up

Export Citation Format

Share Document