Cold water survival – an evidence-based update

2017 ◽  
Vol 103 (3) ◽  
pp. 189-193
Author(s):  
C House

AbstractRoyal Navy (RN) cold water survival advice was historically based on data collated from immersion incident reports during World War II. This evidence-based review highlights the advances in the knowledge and understanding of the risks associated with cold water immersion and how this has been applied to provide up-to-date advice to maximise the chances of survival for passengers on board RN helicopters ditching into water.

2011 ◽  
Vol 46 (5) ◽  
pp. 533-542 ◽  
Author(s):  
Stephanie M. Mazerolle ◽  
Danielle E. Pinkus ◽  
Douglas J. Casa ◽  
Brendon P. McDermott ◽  
Kelly D. Pagnotta ◽  
...  

Context: Exertional heat stroke (EHS) is one of the leading causes of death in athletes. Certified athletic trainers (ATs) demonstrate strong knowledge of recommended practices with EHS but are apprehensive in implementing 2 basic procedures: rectal temperature assessment and cold water immersion. This apprehension might lead to deaths from EHS that could have been prevented. Objective: To investigate why collegiate and high school ATs do not implement best practices for the recognition and treatment of EHS. Design: Qualitative study. Setting: In-person focus groups consisting of 3 to 6 collegiate or high school ATs. Patients or Other Participants: A total of 19 ATs (9 men, 10 women; age = 36 ± 10 years, length of certification = 12 ± 9 years) employed at either the collegiate (n = 10) or high school (n = 9) level participated in the study. Data Collection and Analysis: Interviews were transcribed verbatim, and data were analyzed using deductive data analysis. Peer review and multiple-analyst data triangulation were conducted to establish trustworthiness of the data. Results: Five emergent themes explained the lack of evidence-based practice (EBP) regarding recognition and treatment of EHS. Three themes (lack of knowledge, comfort level, lack of initiative) were common in both the collegiate and high school settings, and 2 separate themes (liability concerns, lack of resources) were present in the high school setting. Conclusions: Our findings are consistent with those in the literature on EBP and EHS. Regardless of clinical setting, ATs have basic information on recognition and treatment of EHS, but 5 themes act as barriers to implementing proper management in the clinical setting. Workshops or hands-on training sessions need to be made available to improve students' comfort levels so ATs will implement EBP into everyday settings.


2014 ◽  
Vol 222 (3) ◽  
pp. 165-170 ◽  
Author(s):  
Andrew L. Geers ◽  
Jason P. Rose ◽  
Stephanie L. Fowler ◽  
Jill A. Brown

Experiments have found that choosing between placebo analgesics can reduce pain more than being assigned a placebo analgesic. Because earlier research has shown prior experience moderates choice effects in other contexts, we tested whether prior experience with a pain stimulus moderates this placebo-choice association. Before a cold water pain task, participants were either told that an inert cream would reduce their pain or they were not told this information. Additionally, participants chose between one of two inert creams for the task or they were not given choice. Importantly, we also measured prior experience with cold water immersion. Individuals with prior cold water immersion experience tended to display greater placebo analgesia when given choice, whereas participants without this experience tended to display greater placebo analgesia without choice. Prior stimulus experience appears to moderate the effect of choice on placebo analgesia.


1999 ◽  
Vol 87 (1) ◽  
pp. 243-246 ◽  
Author(s):  
John W. Castellani ◽  
Andrew J. Young ◽  
James E. Kain ◽  
Michael N. Sawka

This study examined how time of day affects thermoregulation during cold-water immersion (CWI). It was hypothesized that the shivering and vasoconstrictor responses to CWI would differ at 0700 vs. 1500 because of lower initial core temperatures (Tcore) at 0700. Nine men were immersed (20°C, 2 h) at 0700 and 1500 on 2 days. No differences ( P > 0.05) between times were observed for metabolic heat production (M˙, 150 W ⋅ m−2), heat flow (250 W ⋅ m−2), mean skin temperature (T sk, 21°C), and the mean body temperature-change in M˙(ΔM˙) relationship. Rectal temperature (Tre) was higher ( P < 0.05) before (Δ = 0.4°C) and throughout CWI during 1500. The change in Tre was greater ( P < 0.05) at 1500 (−1.4°C) vs. 0700 (−1.2°C), likely because of the higher Tre-T skgradient (0.3°C) at 1500. These data indicate that shivering and vasoconstriction are not affected by time of day. These observations raise the possibility that CWI may increase the risk of hypothermia in the early morning because of a lower initial Tcore.


2009 ◽  
Vol 65 (1) ◽  
Author(s):  
D.V. Van Wyk ◽  
M.I. Lambert

Objective: The main aim of this study was to determine strategies used toaccelerate recovery of elite rugby players after training and matches, asused by medical support staff of rugby teams in South A frica. A  secondaryaim was to focus on specifics of implementing ice/cold water immersion asrecovery strategy. Design: A  Questionnaire-based cross sectional descriptive survey was used.Setting and Participants: Most (n=58) of the medical support staff ofrugby teams (doctors, physiotherapists, biokineticists and fitness trainers)who attended the inaugural Rugby Medical A ssociation conference linked to the South A frican Sports MedicineA ssociation Conference in Pretoria (14-16th November, 2007) participated in the study. Results: Recovery strategies were utilized mostly after matches. Stretching and ice/cold water immersion were utilized the most (83%). More biokineticists and fitness trainers advocated the usage of stretching than their counter-parts (medical doctors and physiotherapists). Ice/Cold water immersion and A ctive Recovery were the top two ratedstrategies. A  summary of the details around implementation of ice/cold water therapy is shown (mean) as utilized bythe subjects: (i) The time to immersion after matches was 12±9 min; (ii) The total duration of one immersion sessionwas 6±6 min; (iii) 3 immersion sessions per average training week was utilized by subjects; (iv) The average water temperature was 10±3 ºC.; (v) Ice cubes were used most frequently to cool water for immersion sessions, and(vi) plastic drums were mostly used as the container for water. Conclusion: In this survey the representative group of support staff provided insight to which strategies are utilizedin South A frican elite rugby teams to accelerate recovery of players after training and/or matches.


2017 ◽  
Vol 313 (4) ◽  
pp. R372-R384 ◽  
Author(s):  
James R. Broatch ◽  
Aaron Petersen ◽  
David J. Bishop

We investigated the underlying molecular mechanisms by which postexercise cold-water immersion (CWI) may alter key markers of mitochondrial biogenesis following both a single session and 6 wk of sprint interval training (SIT). Nineteen men performed a single SIT session, followed by one of two 15-min recovery conditions: cold-water immersion (10°C) or a passive room temperature control (23°C). Sixteen of these participants also completed 6 wk of SIT, each session followed immediately by their designated recovery condition. Four muscle biopsies were obtained in total, three during the single SIT session (preexercise, postrecovery, and 3 h postrecovery) and one 48 h after the last SIT session. After a single SIT session, phosphorylated (p-)AMPK, p-p38 MAPK, p-p53, and peroxisome proliferator-activated receptor-γ coactivator-1α ( PGC-1α) mRNA were all increased ( P < 0.05). Postexercise CWI had no effect on these responses. Consistent with the lack of a response after a single session, regular postexercise CWI had no effect on PGC-1α or p53 protein content. Six weeks of SIT increased peak aerobic power, maximal oxygen consumption, maximal uncoupled respiration (complexes I and II), and 2-km time trial performance ( P < 0.05). However, regular CWI had no effect on changes in these markers, consistent with the lack of response in the markers of mitochondrial biogenesis. Although these observations suggest that CWI is not detrimental to endurance adaptations following 6 wk of SIT, they question whether postexercise CWI is an effective strategy to promote mitochondrial biogenesis and improvements in endurance performance.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chikao Ito ◽  
Isao Takahashi ◽  
Miyuki Kasuya ◽  
Kyoji Oe ◽  
Masahito Uchino ◽  
...  

Medicine ◽  
2016 ◽  
Vol 95 (1) ◽  
pp. e2455 ◽  
Author(s):  
Simon S. Yeung ◽  
Kin Hung Ting ◽  
Maurice Hon ◽  
Natalie Y. Fung ◽  
Manfi M. Choi ◽  
...  

2015 ◽  
Vol 309 (4) ◽  
pp. R389-R398 ◽  
Author(s):  
Llion A. Roberts ◽  
Makii Muthalib ◽  
Jamie Stanley ◽  
Glen Lichtwark ◽  
Kazunori Nosaka ◽  
...  

Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (−21.5 ± 8.8%) and tHb (−10.1 ± 7.7 μM) decreased after exercise ( P < 0.05). During CWI, Q̇ (−1.1 ± 0.7 l) and Tmuscle (−6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased ( P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased ( P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased ( P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high ( P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (−30 to −45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT ( P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI ( P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.


Sign in / Sign up

Export Citation Format

Share Document