Estimating the body temperature of groups of pigs by thermal imaging

2006 ◽  
Vol 158 (10) ◽  
pp. 331-334 ◽  
Author(s):  
P. D. Warriss ◽  
S. J. Pope ◽  
S. N. Brown ◽  
L. J. Wilkins ◽  
T. G. Knowles
Author(s):  
Wai Kit Wong ◽  
Nur Izzati Nadiah Binti Ishak ◽  
Heng Siong Lim ◽  
Jalil bin Md Desa

Some infectious diseases can spread rapidly via a community of human or animals or both, either through airborne particles or viruses. Such rapid spread diseases may become a local, national or international widespread and contagious threat. As a symptom of infection, the body temperature of a disease carrier is higher than normal people. In this chapter, flu detection system using thermal imaging tool and computer vision techniques are discussed. An automatic flu detection method adopting human object extraction algorithm and fuzzy logic based Viola Jones algorithm are also discussed. The proposed system able to capture a thermogram of the human subject, detecting the eye region of the human subject, calculating the pixels values around the detected eye region, converted to temperature readings and further classified the subject's body temperature whether the subject satisfies a flu condition or not. Experimental results also shown that the proposed fuzzy logic based Viola Jones algorithm can trace out flu infectious personal from the input thermal images up to 80% of accuracy.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1094 ◽  
Author(s):  
Edward Narayan ◽  
Annabella Perakis ◽  
Will Meikle

Non-invasive techniques can be applied for monitoring the physiology and behaviour of wildlife in Zoos to improve management and welfare. Thermal imaging technology has been used as a non-invasive technique to measure the body temperature of various domesticated and wildlife species. In this study, we evaluated the application of thermal imaging to measure the body temperature of koalas (Phascolarctos cinereus) in a Zoo environment. The aim of the study was to determine the body feature most suitable for recording a koala’s body temperature (using coefficient of variation scores). We used a FLIR530TM IR thermal imaging camera to take images of each individual koala across three days in autumn 2018 at the Wildlife Sydney Zoo, Australia. Our results demonstrated that koalas had more than one reliable body feature for recording body temperature using the thermal imaging tool—the most reliable features were eyes and abdomen. This study provides first reported application of thermal imaging on an Australian native species in a Zoo and demonstrates its potential applicability as a humane/non-invasive technique for assessing the body temperature as an index of stress.


Author(s):  
Luis Nuñez Tapia ◽  
◽  
Brian Meneses Claudio ◽  
Witman Alvarado Díaz

Abstract— The problem that the world is currently facing and that has claimed more than 3.2 million lives worldwide is COVID-19. Being a highly contagious disease, the WHO recommended limiting the movement of people out of their residence. Given this, Peru took the necessary measures to control the spread of this virus, therefore, the government decreed a general quarantine in the country, which from March 6th to May 9th, 2020, had reported the death of 1814 people in the country, because the health system at the national level was not prepared for such magnitude, in addition to that the number of infections continued to grow since they do not respect social distancing. In view of this problem, this article will design a thermal image processing system to detect possible cases of patients with COVID-19, in such a way that it allows companies or institutions to know the body temperature of each person, and thus know they are possibly COVID-19 patients. Through the design of this system, it will be possible to measure body temperature with the drone and the thermal camera at 50 cm from the person, in such a way that if the person has a body temperature higher than 38°C it could be infected with COVID-19. Therefore, the implementation of this system will help reduce the number of infections within an institution or workplace. Keywords-- Thermal camera, COVID-19, Drone, MATLAB, Image.


The body temperature of humans differs from one person to another, and therefore it becomes difficult to set the optimal temperature of the room. The total room temperature depends on the number of persons present and their body temperatures. The occupancy detection of a room and determining its temperature are dependent on each other. In this paper, A novel approach for determining the room temperature along with occupancy detection and correspondingly giving the input to air-conditioner is discussed. This paper would also provide a solution to determine the number of persons that can leave a room to ensure less congregation of corridors. For getting a definitive body temperature of individuals, we will be using the MLX90640 module, which produces a thermal image and makes it possible for the extraction of temperature data. PIR sensors are used for occupancy detection purposes and an ultrasonic sensor for the congregation problem. These are both implemented using Arduino IDE, whereas raspberry pi handles the temperature data. Finally, using the mean temperature data, the temperature of the air conditioner will be set


2020 ◽  
Vol 16 (1) ◽  
pp. 4-12
Author(s):  
Vandana Garg ◽  
Rohit Dutt

Background: Fever, is known as pyrexia, may occur due to infection, inflammation, or any tissue damage and disease states. Normally, the infected or damaged tissue initiates the enhanced formation of pro-inflammatory mediators like cytokines which further increases the synthesis of prostaglandin E2 (PgE2) near the hypothalamic area and thereby trigger the hypothalamus to elevate the body temperature. Objective: Antipyretics are the agents which reduce the elevated body temperature. The most commonly used antipyretic agent, paracetamol, may be fatal due to its side effects. Methods: In this review paper, Chemical Abstracts, Google Scholar, PubMed, and Science Direct were the sources for the published article to collect information regarding antipyretic activity. Results: This review compiles the antipyretic plants that may be useful to treat fever due to various diseases. Conclusion: These medicinal plants could be good alternatives for traditional allopathic antipyretics.


Author(s):  
Dr.Saurabh Parauha ◽  
Hullur M. A. ◽  
Prashanth A. S.

In Ayurveda, Jwara is not merely the concept of raised body temperature, but as is said in Charaka Samhita, 'Deha- Indriya- Manah- Santap' is the cardinal symptoms of Jwara. This can be defined as the state where the body, mind as well as sense oragans suffer due to the high temperature. Vishamajwara is a type of fever, which is described in all Ayurvedic texts. Charaka mentioned Vishamajwara and Chakrapani have commented on Vishamajwara as Bhutanubanda, Susruta affirmed that Aagantuchhanubhandohi praysho Vishamajware. Madhavakara has also recognised Vishamajwara as Bhutabhishangajanya (infected by microorganism). Vishamajwara is irregular (inconsistent) in it's Arambha (nature of onset commitment), Kriya (action production of symptoms) and Kala (time of appearance) and possesses Anushanga (persistence for long periods). The treatment of this disease depends upon Vegavastha and Avegavastha of Jwara. Various Shodhana and Shamana procedures are mentioned in classics to treat Visham Jwara.


1967 ◽  
Vol 45 (3) ◽  
pp. 321-327 ◽  
Author(s):  
David M. Ogilvie

The effects, on the body temperature of white mice, of repeated short exposures to cold were investigated using two methods of restraint. Animals held in a flattened posture became hypothermic at room temperature, cooled more than five times as fast at −10 °C as mice that could adopt a heat-conserving posture, and continued to cool for some time after they were removed from the cold. With repeated tests, cooling at room temperature decreased, and an improvement in re warming ability was observed. In addition, with lightly restrained mice, the fall in rectal temperature during cold exposure showed a progressive decrease, a phenomenon not observed with severely restrained animals.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2316
Author(s):  
Daniel Mota-Rojas ◽  
Dehua Wang ◽  
Cristiane Gonçalves Titto ◽  
Jocelyn Gómez-Prado ◽  
Verónica Carvajal-de la Fuente ◽  
...  

Body-temperature elevations are multifactorial in origin and classified as hyperthermia as a rise in temperature due to alterations in the thermoregulation mechanism; the body loses the ability to control or regulate body temperature. In contrast, fever is a controlled state, since the body adjusts its stable temperature range to increase body temperature without losing the thermoregulation capacity. Fever refers to an acute phase response that confers a survival benefit on the body, raising core body temperature during infection or systemic inflammation processes to reduce the survival and proliferation of infectious pathogens by altering temperature, restriction of essential nutrients, and the activation of an immune reaction. However, once the infection resolves, the febrile response must be tightly regulated to avoid excessive tissue damage. During fever, neurological, endocrine, immunological, and metabolic changes occur that cause an increase in the stable temperature range, which allows the core body temperature to be considerably increased to stop the invasion of the offending agent and restrict the damage to the organism. There are different metabolic mechanisms of thermoregulation in the febrile response at the central and peripheral levels and cellular events. In response to cold or heat, the brain triggers thermoregulatory responses to coping with changes in body temperature, including autonomic effectors, such as thermogenesis, vasodilation, sweating, and behavioral mechanisms, that trigger flexible, goal-oriented actions, such as seeking heat or cold, nest building, and postural extension. Infrared thermography (IRT) has proven to be a reliable method for the early detection of pathologies affecting animal health and welfare that represent economic losses for farmers. However, the standardization of protocols for IRT use is still needed. Together with the complete understanding of the physiological and behavioral responses involved in the febrile process, it is possible to have timely solutions to serious problem situations. For this reason, the present review aims to analyze the new findings in pathophysiological mechanisms of the febrile process, the heat-loss mechanisms in an animal with fever, thermoregulation, the adverse effects of fever, and recent scientific findings related to different pathologies in farm animals through the use of IRT.


2005 ◽  
Vol 05 (01) ◽  
pp. 165-190 ◽  
Author(s):  
E. Y. K. NG ◽  
COLIN CHONG ◽  
G. J. L. KAW

Severe Acute Respiratory Syndrome (SARS) is a highly infectious disease caused by a coronavirus. Screening to detect potential SARS infected subject with elevated body temperature plays an important role in preventing the spread of SARS. The use of infrared (IR) thermal imaging cameras has thus been proposed as a non-invasive, speedy, cost-effective and fairly accurate means for mass blind screening of potential SARS infected persons. Infrared thermography provides a digital image showing temperature patterns. This has been previously utilized in the detection of inflammation and nerve dysfunctions. It is believed that IR cameras may potentially be used to detect subjects with fever, the cardinal symptom of SARS and avian influenza. The accuracy of the infrared system can, however, be affected by human, environmental, and equipment variables. It is also limited by the fact that the thermal imager measures the skin temperature and not the body core temperature. Thus, the use of IR thermal systems at various checkpoints for mass screening of febrile persons is scientifically unjustified such as what is the false negative rate and most importantly not to create false sense of security. This paper aims to study the effectiveness of infrared systems for its application in mass blind screening to detect subjects with elevated body temperature. For this application, it is critical for thermal imagers to be able to identify febrile from normal subjects accurately. Minimizing the number of false positive and false negative cases improves the efficiency of the screening stations. False negative results should be avoided at all costs, as letting a SARS infected person through the screening process may result in potentially catastrophic results. Hitherto, there is lack of empirical data in correlating facial skin with body temperature. The current work evaluates the correlations (and classification) between the facial skin temperatures to the aural temperature using the artificial neural network approach to confirm the suitability of the thermal imagers for human temperature screening. We show that the Train Back Propagation and Kohonen self-organizing map (SOM) can form an opinion about the type of network that is better to complement thermogram technology in fever diagnosis to drive a better parameters for reducing the size of the neural network classifier while maintaining good classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document