Corrigendum: Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays

2011 ◽  
Vol 19 (NA) ◽  
pp. 495-495 ◽  
Author(s):  
B. Blake Levitt ◽  
Henry Lai
2021 ◽  
pp. 42-53
Author(s):  
Y. Stein ◽  
◽  

Man-made electromagnetic waves are the most widely and rapidly expanding exposure in today's world, including exposure in several frequency groups: extremely low frequencies (ELF) from electricity lines, hybrid car batteries and high power lines (>3 Hz–3 kHz), radiofrequency (RF) and microwave frequencies including millimeter waves (3 kHz–300 GHz) from mobile phones, towers, base stations and wireless devices, and intermediate frequencies "Dirty Electricity" emitted from power lines. While such organizations as ICNIRP (the International Commission on Non-Ionizing Radiation Protection) still continue to claim that electromagnetic radiation can cause "only thermal effects", clinging to theory that does not match facts and upholding obsolete thermal safety standards, extensive scientific evidence has clearly demonstrated that non-thermal health effects produced by electromagnetic radiation do exist, are important to health, and should be taken into consideration when safety standards are set. This review aims to highlight some evidence of biologic effects in various body systems, and to suggest preventive measures to reduce such effects on health. Exposure to electromagnetic radiation at intensities lower than thermal safety standards has been associated with non-thermal biological effects including damage and changes to cells and DNA. This review presents evidence of such effects demonstrated in: the hematologic system, the nervous system, the immune system, the reproductive system, the skin and muscles, the cardiovascular system, glucose metabolism, and Electrohypersensitivity ("Microwave sickness"). Protective measures are then suggested to reduce these effects.


Author(s):  
N.V. Zaitseva ◽  
T.S. Ulanova ◽  
A.L. Ponomarev ◽  
O.A Molok ◽  
A.A. Odegov

Introduction: Measurements of electromagnetic radiation of the radio frequency range are of great relevance due to the increasing number of transmitting radio facilities in the densely populated territories, constant cell site upgrades, and emerging communication standards. The paper presents a brief description of the biological effects of radio frequency electromagnetic radiation and shows basic mechanisms of the negative effect on the most vulnerable organs and systems. Our objective was to evaluate valid guidelines for measuring electromagnetic radiations of the radio frequency range in residential areas, in houses and public buildings. Materials and methods: We reviewed specific characteristics of cellular base and radio relay stations, compared and described electromagnetic radiation measuring devices. The provided recommendations for their selection were based on frequencies at which the communication equipment operates. We also analyzed the current guidelines with account for characteristics of transmitting radio equipment of cellular base stations and the applied measuring instruments. Results: The results of assessing established significant differences are discussed. The analysis of the requirements for measurements demonstrated significant discrepancies and contradictions between the valid documents. The evaluation results demonstrated impossibility of simultaneous measurements of electromagnetic radiation from cellular BS and RRS due to violations of requirements for measurement procedures. We concluded that, according to the current method documents, measurements of electromagnetic radiation from the fourth (4G) and fifth (5G) generation mobile communications systems were not possible. Conclusions: We revealed the necessity to revise the compared guidelines МUК 4.3.1167–02 and МUК 4.3.1677–03, to harmonize regulatory requirements for measurements, and to develop a single document guiding measurements of radio frequency electromagnetic radiation. Recommendations for taking measurements are provided.


2021 ◽  
pp. 42-53
Author(s):  
Y. Stein ◽  
◽  

Man-made electromagnetic waves are the most widely and rapidly expanding exposure in today's world, including ex- posure in several frequency groups: extremely low frequencies (ELF) from electricity lines, hybrid car batteries and high power lines (>3 Hz–3 kHz), radiofrequency (RF) and microwave frequencies including millimeter waves (3 kHz–300 GHz) from mobile phones, towers, base stations and wireless devices, and intermediate frequencies "Dirty Electricity" emitted from power lines. While such organizations as ICNIRP (the International Commission on Non-Ionizing Radiation Protection) still con- tinue to claim that electromagnetic radiation can cause "only thermal effects", clinging to theory that does not match facts and upholding obsolete thermal safety standards, extensive scientific evidence has clearly demonstrated that non-thermal health effects produced by electromagnetic radiation do exist, are important to health, and should be taken into considera- tion when safety standards are set. This review aims to highlight some evidence of biologic effects in various body systems, and to suggest preventive measures to reduce such effects on health. Exposure to electromagnetic radiation at intensities lower than thermal safety standards has been associated with non- thermal biological effects including damage and changes to cells and DNA. This review presents evidence of such effects demonstrated in: the hematologic system, the nervous system, the immune system, the reproductive system, the skin and muscles, the cardiovascular system, glucose metabolism, and Electrohypersen- sitivity ("Microwave sickness"). Protective measures are then suggested to reduce these effects.


2010 ◽  
Vol 18 (NA) ◽  
pp. 369-395 ◽  
Author(s):  
B. Blake Levitt ◽  
Henry Lai

The siting of cellular phone base stations and other cellular infrastructure such as roof-mounted antenna arrays, especially in residential neighborhoods, is a contentious subject in land-use regulation. Local resistance from nearby residents and landowners is often based on fears of adverse health effects despite reassurances from telecommunications service providers that international exposure standards will be followed. Both anecdotal reports and some epidemiology studies have found headaches, skin rashes, sleep disturbances, depression, decreased libido, increased rates of suicide, concentration problems, dizziness, memory changes, increased risk of cancer, tremors, and other neurophysiological effects in populations near base stations. The objective of this paper is to review the existing studies of people living or working near cellular infrastructure and other pertinent studies that could apply to long-term, low-level radiofrequency radiation (RFR) exposures. While specific epidemiological research in this area is sparse and contradictory, and such exposures are difficult to quantify given the increasing background levels of RFR from myriad personal consumer products, some research does exist to warrant caution in infrastructure siting. Further epidemiology research that takes total ambient RFR exposures into consideration is warranted. Symptoms reported today may be classic microwave sickness, first described in 1978. Nonionizing electromagnetic fields are among the fastest growing forms of environmental pollution. Some extrapolations can be made from research other than epidemiology regarding biological effects from exposures at levels far below current exposure guidelines.


Author(s):  
Elena I. Sarapultseva ◽  
Darya V. Uskalova ◽  
Ksenya V. Ustenko

Despite the fact that there are still conflicting opinions about the damage caused by modern wireless communication technologies, most scientists report on the negative biological effects of low-intensity radio frequency electromagnetic radiation at different levels of the organization of live nature. There is no doubt that there is a need not only for a sanitary and hygienic assessment of man-made electromagnetic effects on humans, but also for an environmental assessment for biota. The purpose of the study was to assess the potential environmental risk of electromagnetic impact in the centimeter range on natural ecosystems. The initial data were the authors' own results in the field of radiobiology of non-ionizing radiation, as well as published of other researchers. The article analyzes the biological effects of radio frequency electromagnetic fields detected in organisms of different systematic groups and levels of organization. The data on the non-thermal biological effects of electromagnetic fields indicate a high sensitivity of different species to this factor. The analyzed research results emphasize the need to take into account the features of non-thermal effects of electromagnetic radiation on biota, since these radiations can have a negative impact on different hierarchical levels in natural ecosystems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao Tang ◽  
Ziyan Zhang ◽  
Shen Tian ◽  
Peng Cai

AbstractElectromagnetic radiation is an important environmental factor. It has a potential threat to public health and ecological environment. However, the mechanism by which electromagnetic radiation exerts these biological effects remains unclear. In this study, the effect of Microcystis aeruginosa under electromagnetic radiation (1.8 GHz, 40 V/m) was studied by using transcriptomics. A total of 306 differentially expressed genes, including 121 upregulated and 185 downregulated genes, were obtained in this study. The differentially expressed genes were significantly enriched in the ribosome, oxidative phosphorylation and carbon fixation pathways, indicating that electromagnetic radiation may inhibit protein synthesis and affect cyanobacterial energy metabolism and photosynthesis. The total ATP synthase activity and ATP content significantly increased, whereas H+K+-ATPase activity showed no significant changes. Our results suggest that the energy metabolism pathway may respond positively to electromagnetic radiation. In the future, systematic studies on the effects of electromagnetic radiation based on different intensities, frequencies, and exposure times are warranted; to deeply understand and reveal the target and mechanism of action of electromagnetic exposure on organisms.


2021 ◽  
Vol 2 (5) ◽  
pp. 5-11
Author(s):  
G. A. Tashpulatova ◽  
◽  
A. N. Krasavin

This article is about instrumental measurements of the FR EMR energy flux density. The measurement results were analyzed with the division of the data obtained by the purpose of buildings and the height of the antenna equipment placement, a hygienic assessment of the RF EMR levels created by the equipment of base stations of cellular communications, installed on the roofs of residential and public buildings and adjacent territories of Tashkent is given. A proposal is made on the rational placement of radio engineering facilities.Keywords:electromagnetic field; electromagnetic safety; base station for mobile communications; protection of public health; sanitary supervision


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3041
Author(s):  
Ren Jie Tuieng ◽  
Sarah H. Cartmell ◽  
Cliona C. Kirwan ◽  
Michael J. Sherratt

Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined.


2021 ◽  
Vol 100 (9) ◽  
pp. 929-932
Author(s):  
Anna M. Egorova ◽  
Lydiya A. Lutsenko ◽  
Anna V. Sukhova ◽  
Vyacheslav V. Kolyuka ◽  
Rustam V. Turdyev

The program “Digital Economy of the Russian Federation” approved the Concept for the creation and development of 5G / IMT-2020 networks. The development of 5G communications will significantly impact the implementation of many innovative projects and initiatives: the Smart City project, Unmanned Transport, etc. Along with significant technical advantages compared to previous generations of communication (2G, 3G, 4G), 5G technology has completely different emitting characteristics: more emitting elements, signal modulation, three-dimensional beam, the ability to control the beam, SHF (ultra-high) and EHF (extremely high) radio frequency ranges and centimetre and millimetre wavelengths of electromagnetic radiation. Therefore, it is becoming an especially urgent problem to ensure exposure to the human body of non-ionizing electromagnetic fields of the radio frequency range (30 kHz-300 GHz). The authors searched the literature on the biological effects of 5G cellular communications and electromagnetic radiation in the centimetre and millimetre ranges using the appropriate keywords in PubMed search engines, Scopus, Web of Science, Medline, The Cochrane Library, EMBASE, Global Health, CyberLeninka, RSCI and others. There is currently tentative and conflicting evidence on the impact of 5G. The rapidly growing density of wireless devices and antennas (considering future 5G networks) increases the public health risk from exposure to RF EMFs as the penetration depth for 5G EHF radiation is only a few millimetres. At these wavelengths, resonance phenomena are possible at the cellular and molecular levels, particularly concerning stimulating SHF and EHF oxidative processes and damaging DNA. The influence of the millimetre range of RF-EMF is poorly understood; oncological and non-oncological (impact on the reproductive, immune systems, etc.) effects are possible. Using numerical simulation methods of EMF radiation resonances on insects, Thielens A et al., 2018, found a significant overall increase in the absorbed RF power at a frequency of 6 GHz and higher than a frequency below 6 GHz.


Sign in / Sign up

Export Citation Format

Share Document