The physiological response to cold-water immersion following a mixed martial arts training session

2017 ◽  
Vol 42 (5) ◽  
pp. 529-536 ◽  
Author(s):  
Angus Lindsay ◽  
Sam Carr ◽  
Sean Cross ◽  
Carl Petersen ◽  
John G. Lewis ◽  
...  

Combative sport is one of the most physically intense forms of exercise, yet the effect of recovery interventions has been largely unexplored. We investigated the effect of cold-water immersion on structural, inflammatory, and physiological stress biomarkers following a mixed martial arts (MMA) contest preparation training session in comparison with passive recovery. Semiprofessional MMA competitors (n = 15) were randomly assigned to a cold-water immersion (15 min at 10 °C) or passive recovery protocol (ambient air) completed immediately following a contest preparation training session. Markers of muscle damage (urinary myoglobin), inflammation/oxidative stress (urinary neopterin + total neopterin (neopterin + 7,8-dihydroneopterin)), and hypothalamic–pituitary axis (HPA) activation (saliva cortisol) were determined before, immediately after, and 1, 2, and 24 h postsession. Ratings of perceived soreness and fatigue, counter movement jump, and gastrointestinal temperature were also measured. Concentrations of all biomarkers increased significantly (p < 0.05) postsession. Cold water immersion attenuated increases in urinary neopterin (p < 0.05, d = 0.58), total neopterin (p < 0.05, d = 0.89), and saliva cortisol after 2 h (p < 0.05, d = 0.68) and urinary neopterin again at 24 h (p < 0.01, d = 0.57) in comparison with passive recovery. Perceived soreness, fatigue, and gastrointestinal temperatures were also lower for the cold-water immersion group at several time points postsession whilst counter movement jump did not differ. Combative sport athletes who are subjected to impact-induced stress may benefit from immediate cold-water immersion as a simple recovery intervention that reduces delayed onset muscle soreness as well as macrophage and HPA activation whilst not impairing functional performance.

Pteridines ◽  
2015 ◽  
Vol 26 (4) ◽  
pp. 143-151 ◽  
Author(s):  
Angus Lindsay ◽  
Sam Carr ◽  
Mohd Izani Othman ◽  
Edward Marks ◽  
Sian Davies ◽  
...  

AbstractCold water immersion is thought to reduce the inflammatory response to injury. Using cultured mononuclear cells and human subjects in a mixed martial arts (MMA) contest, we examined the effect of cryotherapy on 7,8-dihydroneopterin and neopterin generation. Urine was collected from 10 elite male mixed martial artists before, immediately post and 1, 2, 24 and 48 h following a contest. Myoglobin was analysed by reverse-phase high performance liquid chromatography, and urinary neopterin and total neopterin (neopterin+7,8-dihydroneopterin) were measured by strong cation exchange high-performance liquid chromatography. Cold water immersion and passive recovery were compared using changes in these markers, while cryotherapy tested total neopterin production in γ-interferon and phorbol myristate acetate (PMA)-stimulated blood-derived mononuclear cells (monocytes/T cells). Myoglobin significantly increased (p<0.05) at 1 h post-contest, neopterin significantly increased at 1 and 24 h (p<0.05), total neopterin significantly increased (p<0.05) at 1 h post for the passive group only, and significant individual variation was observed for all markers (p<0.01). Cold water immersion attenuated total neopterin production (p<0.05), while cryotherapy significantly reduced total neopterin production in PMA-stimulated mononuclear cells (p<0.01). Cryotherapy attenuates the post-exercise inflammatory response following an MMA contest. The evidence also suggests that the mechanisms responsible for this may be related to direct immune cell suppression.


2017 ◽  
Vol 12 (7) ◽  
pp. 886-892 ◽  
Author(s):  
Christos K. Argus ◽  
James R. Broatch ◽  
Aaron C. Petersen ◽  
Remco Polman ◽  
David J. Bishop ◽  
...  

Context:An athlete’s ability to recover quickly is important when there is limited time between training and competition. As such, recovery strategies are commonly used to expedite the recovery process.Purpose:To determine the effectiveness of both cold-water immersion (CWI) and contrast water therapy (CWT) compared with control on short-term recovery (<4 h) after a single full-body resistance-training session.Methods:Thirteen men (age 26 ± 5 y, weight 79 ± 7 kg, height 177 ± 5 cm) were assessed for perceptual (fatigue and soreness) and performance measures (maximal voluntary isometric contraction [MVC] of the knee extensors, weighted and unweighted countermovement jumps) before and immediately after the training session. Subjects then completed 1 of three 14-min recovery strategies (CWI, CWT, or passive sitting [CON]), with the perceptual and performance measures reassessed immediately, 2 h, and 4 h postrecovery.Results:Peak torque during MVC and jump performance were significantly decreased (P < .05) after the resistance-training session and remained depressed for at least 4 h postrecovery in all conditions. Neither CWI nor CWT had any effect on perceptual or performance measures over the 4-h recovery period.Conclusions:CWI and CWT did not improve short-term (<4-h) recovery after a conventional resistance-training session.


2016 ◽  
Vol 51 (6) ◽  
pp. 500-501 ◽  
Author(s):  
Emma A. Nye ◽  
Jessica R. Edler ◽  
Lindsey E. Eberman ◽  
Kenneth E. Games

Reference: Zhang Y, Davis JK, Casa DJ, Bishop PA. Optimizing cold water immersion for exercise-induced hyperthermia: a meta-analysis. Med Sci Sports Exerc. 2015;47(11):2464−2472. Clinical Questions: Do optimal procedures exist for implementing cold-water immersion (CWI) that yields high cooling rates for hyperthermic individuals? Data Sources: One reviewer performed a literature search using PubMed and Web of Science. Search phrases were cold water immersion, forearm immersion, ice bath, ice water immersion, immersion, AND cooling. Study Selection: Studies were included based on the following criteria: (1) English language, (2) full-length articles published in peer-reviewed journals, (3) healthy adults subjected to exercise-induced hyperthermia, and (4) reporting of core temperature as 1 outcome measure. A total of 19 studies were analyzed. Data Extraction: Pre-immersion core temperature, immersion water temperature, ambient temperature, immersion duration, and immersion level were coded a priori for extraction. Data originally reported in graphical form were digitally converted to numeric values. Mean differences comparing the cooling rates of CWI with passive recovery, standard deviation of change from baseline core temperature, and within-subjects r were extracted. Two independent reviewers used the Physiotherapy Evidence Database (PEDro) scale to assess the risk of bias. Main Results: Cold-water immersion increased the cooling rate by 0.03°C/min (95% confidence interval [CI] = 0.03, 0.04°C/min) compared with passive recovery. Cooling rates were more effective when the pre-immersion core temperature was ≥38.6°C (P = .023), immersion water temperature was ≤10°C (P = .036), ambient temperature was ≥20°C (P = .013), or immersion duration was ≤10 minutes (P &lt; .001). Cooling rates for torso and limb immersion (mean difference = 0.04°C/min, 95% CI = 0.03, 0.06°C/min) were higher (P = .028) than those for forearm and hand immersion (mean difference = 0.01°C/min, 95% CI = −0.01, 0.04°C/min). Conclusions: Hyperthermic individuals were cooled twice as fast by CWI as by passive recovery. Therefore, the former method is the preferred choice when treating patients with exertional heat stroke. Water temperature should be &lt;10°C, with the torso and limbs immersed. Insufficient published evidence supports CWI of the forearms and hands.


2019 ◽  
Vol 11 (1) ◽  
pp. 189-192
Author(s):  
Ritva S. Taipale ◽  
Johanna K. Ihalainen ◽  
Phillip J. Jones ◽  
Antti A. Mero ◽  
Keijo Häkkinen ◽  
...  

SummaryStudy aim: The purpose of this study was to compare the effects of cold-water immersion (CWI) vs. active recovery performed after each individual strength and endurance training session over a 10-week period of high-intensity combined strength and endurance training.Materials and methods: Seventeen healthy men completed 10 weeks of high-intensity combined strength and endurance training. One group (AR, n = 10) completed active recovery that included 15 minutes of running at 30–40% VO2max after every strength training session while the other group (CWI, n = 7) completed 5 minutes of active recovery (at the same intensity as the AR group) followed by 10 minutes of cold-water (12 ± 1°C) immersion. During CWI, the subjects were seated passively during the 10 minutes of cold-water immersion and the water level remained just below the pectoral muscles. Muscle strength and power were measured by isometric bilateral, 1 repetition maximum, leg press (ISOM LP) and countermovement jump (CMJ) height. Endurance performance was measured by a 3000 m running time trial. Serum testosterone, cortisol, and IGF-1 were assessed from venous blood samples.Results: ISOM LP and CMJ increased significantly over the training period, but 3000 m running time increased only marginally. Serum testosterone, cortisol, and IGF-1 remained unchanged over the intervention period. No differences between the groups were observed.Conclusions: AR and CWI were equally effective during 10 weeks of high-intensity combined strength and endurance training. Thus, physically active individuals participating in high-intensity combined strength and endurance training should use the recovery method they prefer.


2020 ◽  
Vol 45 (3) ◽  
pp. 251-257
Author(s):  
Daryl M.G. Hurrie ◽  
Gordon G. Giesbrecht

High-intensity exercise is impaired by increased esophageal temperature (Tes) above 38 °C and/or decreased muscle temperature. We compared the effects of three 30-min recovery strategies following a first set of three 30-s Wingate tests (set 1), on a similar postrecovery set of Wingate tests (set 2). Recovery conditions were passive recovery in thermoneutral (34 °C) water (Passive-TN) and active recovery (underwater cycling; ∼33% maximum power) in thermoneutral (Active-TN) or cold (15 °C) water (Active-C). Tes rose for all conditions by the end of set 1 (∼1.0 °C). After recovery, Tes returned to baseline in both Active-C and Passive-TN but remained elevated in Active-TN (p < 0.05). At the end of set 2, Tes was lower in Active-C (37.2 °C) than both Passive-TN (38.1 °C) and Active-TN (38.8 °C) (p < 0.05). From set 1 to 2 mean power did not change with Passive-TN (+0.2%), increased with Active-TN (+2.4%; p < 0.05), and decreased with Active-C (–3.2%; p < 0.05). Heart rate was similar between conditions throughout, except at end-recovery; it was lower in Passive-TN (92 beats·min−1) than both exercise conditions (Active-TN, 126 beats·min−1; Active-C, 116 beats·min−1) (p < 0.05). Although Active-C significantly reduced Tes, the best postrecovery performance occurred with Active-TN. Novelty An initial set of 3 Wingates increased Tes to ∼38 °C. Thirty minutes of Active-C was well tolerated, and decreased Tes and blood lactate to baseline values, but decreased subsequent Wingate performance.


2016 ◽  
Vol 13 (1) ◽  
pp. 1402
Author(s):  
Asim Cengiz ◽  
Mehmet Settar Kocak

The aim of this study was to examine effects of cold-water immersion after exercise on powerresponses of wrestlers. Twenty elite male wrestlers were formed by similar age, height, weight and fitness parameters. The wrestling training session included a 60-minute of vigorous exercise. It consisted of warm-up exercises, standing technical and tactical exercises that mostly allocates arm and leg muscles. Vertical jump height, ropes climb height, and delayed onset of soreness was measured before, after, 24 h and 48 hors after the wrestling training. Cold-water immersion caused decrements in power loss at each follow-up time in comparison to a thermo neutral immersion.  It can be suggested that the longer time needed for power to return to normal levels after cold treatment and assessment of varied contraction types may present a more broad demonstration of muscle function and consequential capacity for dynamic exercise following exercise-induced muscle damage.


Sign in / Sign up

Export Citation Format

Share Document