The human cortical autonomic network and volitional exercise in health and disease

2018 ◽  
Vol 43 (11) ◽  
pp. 1122-1130 ◽  
Author(s):  
Baraa K. Al-Khazraji ◽  
J. Kevin Shoemaker

The autonomic nervous system elicits continuous beat-by-beat homeostatic adjustments to cardiovascular control. These modifications are mediated by sensory inputs (e.g., baroreceptors, metaboreceptors, pulmonary, thermoreceptors, and chemoreceptors afferents), integration at the brainstem control centres (i.e., medulla), and efferent autonomic neural outputs (e.g., spinal, preganglionic, and postganglionic pathways). However, extensive electrical stimulation and functional imaging research show that the brain’s higher cortical regions (e.g., insular cortex, medial prefrontal cortex, anterior cingulate cortex) partake in homeostatic regulation of the cardiovascular system at rest and during exercise. We now appreciate that these cortical areas form a network, namely the “cortical autonomic network” (CAN), which operate as part of a larger central autonomic network comprising 2-way communication of cortical and subcortical areas to exert autonomic influence. Interestingly, differential patterns of CAN activity and ensuing cardiovascular control are present in disease states, thereby highlighting the importance of considering the role of CAN as an integral aspect of cardiovascular regulation in health and disease. This review discusses current knowledge on human cortical autonomic activation during volitional exercise, and the role of exercise training on this activation in both health and disease.

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2428
Author(s):  
Małgorzata Guz ◽  
Witold Jeleniewicz ◽  
Anna Malm ◽  
Izabela Korona-Glowniak

A still growing interest between human nutrition in relation to health and disease states can be observed. Dietary components shape the composition of microbiota colonizing our gastrointestinal tract which play a vital role in maintaining human health. There is a strong evidence that diet, gut microbiota and their metabolites significantly influence our epigenome, particularly through the modulation of microRNAs. These group of small non-coding RNAs maintain cellular homeostasis, however any changes leading to impaired expression of miRNAs contribute to the development of different pathologies, including neoplastic diseases. Imbalance of intestinal microbiota due to diet is primary associated with the development of colorectal cancer as well as other types of cancers. In the present work we summarize current knowledge with particular emphasis on diet-microbiota-miRNAs axis and its relation to the development of colorectal cancer.


2017 ◽  
Author(s):  
Sean M. Kearney ◽  
Sean M. Gibbons ◽  
Mathilde Poyet ◽  
Thomas Gurry ◽  
Kevin Bullock ◽  
...  

AbstractEndospore-formers in the human microbiota are well adapted for host-to-host transmission, and an emerging consensus points to their role in determining health and disease states in the gut. The human gut, more than any other environment, encourages the maintenance of endospore formation, with recent culture-based work suggesting that over 50% of genera in the microbiome carry genes attributed to this trait. However, there has been limited work on the ecological role of endospores and other stress-resistant cellular states in the human gut. In fact, there is no data to indicate whether organisms with the genetic potential to form endospores actually form endosporesin situand how sporulation varies across individuals and over time. Here, we applied a culture-independent protocol to enrich for endospores and other stress-resistant cells in human feces to identify variation in these states across people and within an individual over time. We see that cells with resistant states are more likely than those without to be shared among multiple individuals, which suggests that these resistant states are particularly adapted for cross-host dissemination. Furthermore, we use untargeted fecal metabolomics in 24 individuals and within a person over time to show that these organisms respond to shared environmental signals, and in particular, dietary fatty acids, that likely mediate colonization of recently disturbed human guts.


MicroRNA ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sara Tomei ◽  
Harshitha Shobha Manjunath ◽  
Selvasankar Murugesan ◽  
Souhaila Al Khodor

: MicroRNAs (miRNAs) are non-coding RNAs ranging from 18-24 nucleotides also known to regulate the human genome mainly at the post-transcriptional level. MiRNAs were shown to play an important role in most biological processes such as apoptosis and in the pathogenesis of many diseases such as cardiovascular diseases and cancer. Recent developments of advanced molecular high-throughput technologies have enhanced our knowledge of miRNAs. MiRNAs can now be discovered, interrogated, and quantified in various body fluids, and hence can serve as diagnostic and therapeutic markers for many diseases. While most studies use blood as a sample source to measure circulating miRNAs as possible biomarkers for disease pathogenesis, fewer studies have assessed the role of salivary miRNAs in health and disease. This review aims at providing an overview of the current knowledge of the salivary miRNome, addressing the technical aspects of saliva sampling and highlighting the applicability of miRNA screening to clinical practice.


Author(s):  
Rosa Delgado Jiménez ◽  
Corinne Benakis

AbstractThe intestinal microbiome is emerging as a critical factor in health and disease. The microbes, although spatially restricted to the gut, are communicating and modulating the function of distant organs such as the brain. Stroke and other neurological disorders are associated with a disrupted microbiota. In turn, stroke-induced dysbiosis has a major impact on the disease outcome by modulating the immune response. In this review, we present current knowledge on the role of the gut microbiome in stroke, one of the most devastating brain disorders worldwide with very limited therapeutic options, and we discuss novel insights into the gut-immune-brain axis after an ischemic insult. Understanding the nature of the gut bacteria-brain crosstalk may lead to microbiome-based therapeutic approaches that can improve patient recovery.


2014 ◽  
Vol 27 (1) ◽  
pp. 94-106 ◽  
Author(s):  
Emma L. Beckett ◽  
Zoe Yates ◽  
Martin Veysey ◽  
Konsta Duesing ◽  
Mark Lucock

A growing number of studies in recent years have highlighted the importance of molecular nutrition as a potential determinant of health and disease. In particular, the ability of micronutrients to regulate the final expression of gene products via modulation of transcription and translation is now being recognised. Modulation of microRNA (miRNA) by nutrients is one pathway by which nutrition may mediate gene expression. miRNA, a class of non-coding RNA, can directly regulate gene expression post-transcriptionally. In addition, miRNA are able to indirectly influence gene expression potential at the transcriptional level via modulation of the function of components of the epigenetic machinery (DNA methylation and histone modifications). These mechanisms interact to form a complex, bi-directional regulatory circuit modulating gene expression. Disease-specific miRNA profiles have been identified in multiple disease states, including those with known dietary risk factors. Therefore, the role that nutritional components, in particular, vitamins and minerals, play in the modulation of miRNA profiles, and consequently health and disease, is increasingly being investigated, and as such is a timely subject for review. The recently posited potential for viable exogenous miRNA to enter human blood circulation from food sources adds another interesting dimension to the potential for dietary miRNA to contribute to gene modulation.


2017 ◽  
Vol 61 (6) ◽  
pp. 721-732 ◽  
Author(s):  
Jeanne Mialet-Perez ◽  
Cécile Vindis

Autophagy is a highly conserved mechanism of lysosome-mediated protein and organelle degradation that plays a crucial role in maintaining cellular homeostasis. In the last few years, specific functions for autophagy have been identified in many tissues and organs. In the cardiovascular system, autophagy appears to be essential to heart and vessel homeostasis and function; however defective or excessive autophagy activity seems to contribute to major cardiovascular disorders including heart failure (HF) or atherosclerosis. Here, we review the current knowledge on the role of cardiovascular autophagy in physiological and pathophysiological conditions.


2021 ◽  
Vol 22 (15) ◽  
pp. 7775
Author(s):  
Ana Paredes ◽  
Rocio Santos-Clemente ◽  
Mercedes Ricote

The heart is the first organ to acquire its physiological function during development, enabling it to supply the organism with oxygen and nutrients. Given this early commitment, cardiomyocytes were traditionally considered transcriptionally stable cells fully committed to contractile function. However, growing evidence suggests that the maintenance of cardiac function in health and disease depends on transcriptional and epigenetic regulation. Several studies have revealed that the complex transcriptional alterations underlying cardiovascular disease (CVD) manifestations such as myocardial infarction and hypertrophy is mediated by cardiac retinoid X receptors (RXR) and their partners. RXRs are members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors and drive essential biological processes such as ion handling, mitochondrial biogenesis, and glucose and lipid metabolism. RXRs are thus attractive molecular targets for the development of effective pharmacological strategies for CVD treatment and prevention. In this review, we summarize current knowledge of RXR partnership biology in cardiac homeostasis and disease, providing an up-to-date view of the molecular mechanisms and cellular pathways that sustain cardiomyocyte physiology.


2016 ◽  
Vol 113 (33) ◽  
pp. E4801-E4809 ◽  
Author(s):  
Kendrick H. Yim ◽  
Thomas L. Prince ◽  
Shiwei Qu ◽  
Fang Bai ◽  
Patricia A. Jennings ◽  
...  

Because of their importance in maintaining protein homeostasis, molecular chaperones, including heat-shock protein 90 (Hsp90), represent attractive drug targets. Although a number of Hsp90 inhibitors are in preclinical/clinical development, none strongly differentiate between constitutively expressed Hsp90β and stress-induced Hsp90α, the two cytosolic paralogs of this molecular chaperone. Thus, the importance of inhibiting one or the other paralog in different disease states remains unknown. We show that the natural product, gambogic acid (GBA), binds selectively to a site in the middle domain of Hsp90β, identifying GBA as an Hsp90β-specific Hsp90 inhibitor. Furthermore, using computational and medicinal chemistry, we identified a GBA analog, referred to as DAP-19, which binds potently and selectively to Hsp90β. Because of its unprecedented selectivity for Hsp90β among all Hsp90 paralogs, GBA thus provides a new chemical tool to study the unique biological role of this abundantly expressed molecular chaperone in health and disease.


Sign in / Sign up

Export Citation Format

Share Document