scholarly journals The Gut Ecosystem: A Critical Player in Stroke

Author(s):  
Rosa Delgado Jiménez ◽  
Corinne Benakis

AbstractThe intestinal microbiome is emerging as a critical factor in health and disease. The microbes, although spatially restricted to the gut, are communicating and modulating the function of distant organs such as the brain. Stroke and other neurological disorders are associated with a disrupted microbiota. In turn, stroke-induced dysbiosis has a major impact on the disease outcome by modulating the immune response. In this review, we present current knowledge on the role of the gut microbiome in stroke, one of the most devastating brain disorders worldwide with very limited therapeutic options, and we discuss novel insights into the gut-immune-brain axis after an ischemic insult. Understanding the nature of the gut bacteria-brain crosstalk may lead to microbiome-based therapeutic approaches that can improve patient recovery.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mingxia Zhao ◽  
Houzhen Tuo ◽  
Shuhui Wang ◽  
Lin Zhao

The brain is the most important and complex organ in most living creatures which serves as the center of the nervous system. The function of human brain includes controlling of the motion of the body and different organs and maintaining basic homeostasis. The disorders of the brain caused by a variety of reasons often severely impact the patients’ normal life or lead to death in extreme cases. Monocyte is an important immune cell which is often recruited to the brain in a number of brain disorders. However, the role of monocytes may not be simply described as beneficial or detrimental. It significantly depends on the disease models and the stages of disease progression. In this review, we summarized the current knowledge about the role of monocytes and monocyte-derived macrophages during several common brain disorders. Major focuses include ischemic stroke, Alzheimer’s disease, multiple sclerosis, intracerebral hemorrhage, and insomnia. The recruitment, differentiation, and function of monocyte in these diseases are reviewed.


2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 723
Author(s):  
Hafid Ait-Oufella ◽  
Jean-Rémi Lavillegrand ◽  
Alain Tedgui

Experimental studies have provided strong evidence that chronic inflammation triggered by the sub-endothelial accumulation of cholesterol-rich lipoproteins in arteries is essential in the initiation and progression of atherosclerosis. Recent clinical trials highlighting the efficacy of anti-inflammatory therapies in coronary patients have confirmed that this is also true in humans Monocytes/macrophages are central cells in the atherosclerotic process, but adaptive immunity, through B and T lymphocytes, as well as dendritic cells, also modulates the progression of the disease. Analysis of the role of different T cell subpopulations in murine models of atherosclerosis identified effector Th1 cells as proatherogenic, whereas regulatory T cells (Tregs) have been shown to protect against atherosclerosis. For these reasons, better understanding of how Tregs influence the atherosclerotic process is believed to provide novel Treg-targeted therapies to combat atherosclerosis. This review article summarizes current knowledge about the role of Tregs in atherosclerosis and discusses ways to enhance their function as novel immunomodulatory therapeutic approaches against cardiovascular disease.


Author(s):  
Andrea Sanchez-Navarro ◽  
Isaac González-Soria ◽  
Rebecca Caldiño-Bohn ◽  
Norma A. Bobadilla

Serpins are a superfamily of proteins characterized by their common function as serine protease inhibitors. So far, 36 serpins from nine clades have been identified. These proteins are expressed in all the organs and are involved in multiple important functions such as the regulation of blood pressure, hormone transport, insulin sensitivity, and the inflammatory response. Diseases such as obesity, diabetes, cardiovascular, and kidney disorders are intensively studied to find effective therapeutic targets. Given serpins' outstanding functionality, the deficiency or overexpression of certain types of serpin have been associated with diverse pathophysiological events. In particular, we will focus on reviewing the studies evaluating the participation of serpins, and particularly SerpinA3, in diverse diseases that occur in relevant organs such as the brain, retinas, corneas, lungs, cardiac vasculature, and kidneys. In this review, we summarize the role of serpins in physiological and pathophysiological processes, as well as recent evidence on the crucial role of SerpinA3 in several pathologies. Finally, we emphasize the importance of SerpinA3 in regulating cellular processes such as angiogenesis, apoptosis, fibrosis, oxidative stress, and the inflammatory response.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fabien Pifferi ◽  
Benoit Laurent ◽  
Mélanie Plourde

Many prospective studies have shown that a diet enriched in omega-3 polyunsaturated fatty acids (n-3 PUFAs) can improve cognitive function during normal aging and prevent the development of neurocognitive diseases. However, researchers have not elucidated how n-3 PUFAs are transferred from the blood to the brain or how they relate to cognitive scores. Transport into and out of the central nervous system depends on two main sets of barriers: the blood-brain barrier (BBB) between peripheral blood and brain tissue and the blood-cerebrospinal fluid (CSF) barrier (BCSFB) between the blood and the CSF. In this review, the current knowledge of how lipids cross these barriers to reach the CNS is presented and discussed. Implications of these processes in health and disease, particularly during aging and neurodegenerative diseases, are also addressed. An assessment provided here is that the current knowledge of how lipids cross these barriers in humans is limited, which hence potentially restrains our capacity to intervene in and prevent neurodegenerative diseases.


2021 ◽  
Vol 22 (16) ◽  
pp. 8876
Author(s):  
Pierre Layrolle ◽  
Pierre Payoux ◽  
Stéphane Chavanas

Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a master regulator of metabolism, adipogenesis, inflammation and cell cycle, and it has been extensively studied in the brain in relation to inflammation or neurodegeneration. Little is known however about its role in viral infections of the brain parenchyma, although they represent the most frequent cause of encephalitis and are a major threat for the developing brain. Specific to viral infections is the ability to subvert signaling pathways of the host cell to ensure virus replication and spreading, as deleterious as the consequences may be for the host. In this respect, the pleiotropic role of PPARγ makes it a critical target of infection. This review aims to provide an update on the role of PPARγ in viral infections of the brain. Recent studies have highlighted the involvement of PPARγ in brain or neural cells infected by immunodeficiency virus 1, Zika virus, or human cytomegalovirus. They have provided a better understanding on PPARγ functions in the infected brain, and revealed that it can be a double-edged sword with respect to inflammation, viral replication, or neuronogenesis. They unraveled new roles of PPARγ in health and disease and could possibly help designing new therapeutic strategies.


2021 ◽  
Vol 22 (22) ◽  
pp. 12499
Author(s):  
Chaebin Kim ◽  
Ali Yousefian-Jazi ◽  
Seung-Hye Choi ◽  
Inyoung Chang ◽  
Junghee Lee ◽  
...  

Huntington’s disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.


2021 ◽  
Vol 66 (2) ◽  
pp. 263-279
Author(s):  
D. V. Karpenko ◽  
N. A. Petinati ◽  
N. J. Drize ◽  
A. E. Bigildeev

Introduction. Current knowledge of tumour biology attests a dual genetic and epigenetic nature of cancer cell abnormalities. Tumour epigenetics research provided insights into the key pathways mediating oncogenesis and facilitated novel epigenetic therapies.Aim — an overview of intricate involvement of epigenetic change in haematological morbidity and current therapeutic approaches to target the related mechanisms.Main findings. We review the best known epigenetic marks in tumour cells, e.g. DNA cytosine methylation, methylation and acetylation of histone proteins, the underlying enzymatic machinery and its role in oncogenesis. The epigenetic profile-changing drugs are described, including DNA hypomethylating agents, histone deacetylase and methylase inhibitors. A particular focus is made on substances currently approved in haematological therapy or undergoing clinical trial phases for future clinical availability.


2018 ◽  
Vol 8 (9) ◽  
pp. 163 ◽  
Author(s):  
Caroline Gurvich ◽  
Kate Hoy ◽  
Natalie Thomas ◽  
Jayashri Kulkarni

Hormones of the hypothalamic-pituitary-gonadal (HPG) axis that regulate reproductive function have multiple effects on the development, maintenance and function of the brain. Sex differences in cognitive functioning have been reported in both health and disease, which may be partly attributed to sex hormones. The aim of the current paper was to provide a theoretical review of how sex hormones influence cognitive functioning across the lifespan as well as provide an overview of the literature on sex differences and the role of sex hormones in cognitive decline, specifically in relation to Alzheimer’s disease (AD). A summary of current hormone and sex-based interventions for enhancing cognitive functioning and/or reducing the risk of Alzheimer’s disease is also provided.


2018 ◽  
Vol 43 (11) ◽  
pp. 1122-1130 ◽  
Author(s):  
Baraa K. Al-Khazraji ◽  
J. Kevin Shoemaker

The autonomic nervous system elicits continuous beat-by-beat homeostatic adjustments to cardiovascular control. These modifications are mediated by sensory inputs (e.g., baroreceptors, metaboreceptors, pulmonary, thermoreceptors, and chemoreceptors afferents), integration at the brainstem control centres (i.e., medulla), and efferent autonomic neural outputs (e.g., spinal, preganglionic, and postganglionic pathways). However, extensive electrical stimulation and functional imaging research show that the brain’s higher cortical regions (e.g., insular cortex, medial prefrontal cortex, anterior cingulate cortex) partake in homeostatic regulation of the cardiovascular system at rest and during exercise. We now appreciate that these cortical areas form a network, namely the “cortical autonomic network” (CAN), which operate as part of a larger central autonomic network comprising 2-way communication of cortical and subcortical areas to exert autonomic influence. Interestingly, differential patterns of CAN activity and ensuing cardiovascular control are present in disease states, thereby highlighting the importance of considering the role of CAN as an integral aspect of cardiovascular regulation in health and disease. This review discusses current knowledge on human cortical autonomic activation during volitional exercise, and the role of exercise training on this activation in both health and disease.


Sign in / Sign up

Export Citation Format

Share Document