Dyeing and Mechanical Properties of Cotton Modified for Cationic Dyes with Hydrophobic and Acidic Groups

1992 ◽  
Vol 62 (3) ◽  
pp. 135-139 ◽  
Author(s):  
Kazuhiko Fukatsu

Basic studies define the relationship between dyeability for cationic dyes and mechanical properties of chemically modified cotton fabric. Introduction of benzoyl and sulfonic acid groups provides either satisfactory dyeability for cationic dyes or color-fastness, and mechanical properties are reported as a function of the benzoate degree of substitution value. The general trend is toward increased breaking load and bending stiffness and decreased wrinkle recovery for the chemically modified fabrics, but within this trend there is latitude for selection of the degree of substituent groups to provide superior performance.

2015 ◽  
Vol 656-657 ◽  
pp. 231-236
Author(s):  
Risa Koda ◽  
Hiroshi Usuki ◽  
Masahiro Yoshinobu ◽  
Kana Morishita ◽  
Shuho Koseki ◽  
...  

For better selection of coated cutting tools, TiAlN (Ti50Al50N) and CrAlN (Cr50Al50N) coatings were deposited onto ball-nose and square end mills using arc evaporation, and their cutting performances were evaluated using steel workpieces of various hardnesses. In particular, cutting tests were performed on three types of workpieces, made from S50C, SKD61, and SKD11 steels, having Brinell hardness numbers of HB220, HRC40, and HRC60, respectively. The results of the cutting experiments were elucidated and discussed in terms of the mechanical properties and anti-oxidation resistances of the different coatings. The results revealed that TiAlN-coated square end mills at high cutting speeds (V = 200 m/min ) had superior performance when used on steels with high hardness (SKD11), whereas CrAlN-coated ball-nose end mills were superior when used on low hardness steel (S50C). Therefore, CrAlN-coated ball-nose end mills are concluded to be suitable for the machining of low hardness steels, whereas TiAlN-coated square end mills are preferable for the machining of high hardness steels (SKD11).


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1794
Author(s):  
José Pérez-Rigueiro ◽  
Manuel Elices ◽  
Gustavo R. Plaza ◽  
Gustavo V. Guinea

The prominence of spider silk as a hallmark in biomimetics relies not only on its unrivalled mechanical properties, but also on how these properties are the result of a set of original design principles. In this sense, the study of spider silk summarizes most of the main topics relevant to the field and, consequently, offers a nice example on how these topics could be considered in other biomimetic systems. This review is intended to present a selection of some of the essential design principles that underlie the singular microstructure of major ampullate gland silk, as well as to show how the interplay between them leads to the outstanding tensile behavior of spider silk. Following this rationale, the mechanical behavior of the material is analyzed in detail and connected with its main microstructural features, specifically with those derived from the semicrystalline organization of the fibers. Establishing the relationship between mechanical properties and microstructure in spider silk not only offers a vivid image of the paths explored by nature in the search for high performance materials, but is also a valuable guide for the development of new artificial fibers inspired in their natural counterparts.


2017 ◽  
Vol 903 ◽  
pp. 17-23 ◽  
Author(s):  
Álvaro Rodríguez-Prieto ◽  
Ana Maria Camacho ◽  
Miguel Ángel Sebastián

Materials technology is a matter of great applicative and crosscutting interest, as evidenced by their presence in most curriculums of the current industrial engineering degrees. During the development of this matter, it is crucial that the student assimilates not only the relationship among composition, processing and mechanical properties, but also, how all these technological features interact facing the in-service behavior of the material. That is why, within a Doctoral dissertation developed at the Department of Construction and Manufacturing Engineering at the National Distance Education University (UNED), it has designed a computer tool to quantify the stringency level of technological requirements of materials (especially suitable for high demanding applications), characterized by its suitability as interactive teaching material used in the teaching of materials engineering. As a case study, we have chosen a selection of materials for nuclear reactor pressure vessels, because it is a very representative example of the relationship between chemical composition, mechanical properties and in-service behavior.


2009 ◽  
Vol 24 (2) ◽  
pp. 556-564 ◽  
Author(s):  
Ting Liao ◽  
Jingyang Wang ◽  
Yanchun Zhou

MAX-phase carbides (M is an early transition metal, A is an A-group element) exhibit an interesting bonding characteristic of alternative stacking of strong M–C bonds and relatively weak M–A bonds in one direction. In the present first-principles total energy calculations, we establish the relationship between mechanical properties and electronic structure for ternary M2AC (M = Ti, V, Cr, A = Al, Si, P, S) carbides. By systematically tuning elements on the M and A sites, pronounced enhancements of bulk modulus, elastic stiffness, and ideal shear strength are achieved in V-containing V2AC (A = Al, Si, P, and S) carbides. It is suggested that tailoring on the A site is more efficient than on the M site in strengthening the mechanical properties of studied serial carbides. The results highlight a general trend for tailor-made mechanical properties of ternary M2AC carbides by control of chemical bonding.


2006 ◽  
Vol 84 (4) ◽  
pp. 581-593 ◽  
Author(s):  
Anja Geitmann

Biomechanical studies aim at understanding the relationship between the mechanical properties of biological structures and their function. In cytomechanical investigations, this approach is brought down to the scale of cells and subcellular structures. In plant cells and the hyphae of fungi and water molds, interactions between turgor pressure, the cell wall, and the cytoskeleton are considered of primary importance. This review is an overview of how the mechanical properties of these individual features and their interactions have been measured and how the experimental data are used to produce theoretical mechanical models of cellular architecture and dynamics. Several models are discussed, and focusing on the example of tip-growing cells, various approaches to understanding the mechanical aspects of cellular morphogenesis are analyzed.


2017 ◽  
Vol 12 (3) ◽  
pp. 203-209 ◽  
Author(s):  
Vaidas Ramūnas ◽  
Audrius Vaitkus ◽  
Alfredas Laurinavičius ◽  
Donatas Čygas ◽  
Aurimas Šiukščius

As the railway lifespan is the main criterion for selection of the aggregate for ballast and for planning the maintenance of the railroad, it is important to define the relationship between the particle load resistant characteristics and a lifetime of ballast in structure. Assessment of the quality of the ballast aggregate particles under dynamic and static loading reflect both, the toughness and hardness, and these are identified with the Los Angeles Abrasion and Micro-Deval Abrasion values. The model formerly developed by Canadian Pacific Railroads was adapted to predict possible loads expressed in cumulated tonnes. Different ballast aggregate mixtures were tested in the laboratory including dolomite and granite. Calculated potential gross tonnage (expressed in Million Gross Tonnes) of the railway per lifetime for each different aggregate type presented. The outcome of this research is established classification system of railway ballast aggregate and defined Los Angeles Abrasion and Micro-Deval Abrasion values of aggregate dependently on required lifetime.


2017 ◽  
Vol 872 ◽  
pp. 77-82
Author(s):  
Roberto Fernandez Martinez ◽  
Pello Jimbert ◽  
Ana Okariz ◽  
Teresa Guraya

The goal in this work is to build a multivariate linear model to predict tensile strength since is one of the most significant mechanical properties of carbon-black reinforced rubber blends. This model is based in the relationship between the final mechanical properties and the material composition, with the advantage of using this model to improve the design of the composition of the blend. In order to predict this relevant physical attribute of rubber blends a linear regression is performed, but previously a multivariate analysis of the data is done to get a better accuracy in the validation of the model. The number of used instances and the values are determined by a Taguchi design of experiments, and the output values are obtained from the tensile strength test following the corresponding standard. After the performance of the multivariate analysis where the input variables are under a detail study, a selection of the best features help to improve the accuracy of the model, passing from a 24.80% to a 20.60% of error.


Author(s):  
А. I. Grabovets ◽  
V. P. Kadushkina ◽  
S. А. Kovalenko

With the growing aridity of the climate on the Don, it became necessary to improve the methodology for conducting the  breeding of spring durum wheat. The main method of obtaining the source material remains intraspecific step hybridization. Crossings were performed between genetically distant forms, differing in origin and required traits and properties. The use of chemical mutagenesis was a productive way to change the heredity of genotypes in terms of drought tolerance. When breeding for productivity, both in dry years of research and in favorable years, the most objective markers were identified — the size of the aerial mass, the mass of grain per plant, spike, and harvest index. The magnitude of the correlation coefficients between the yield per unit area and the elements of its structure is established. It was most closely associated with them in dry years, while in wet years it decreased. Power the correlation of the characteristics of the pair - the grain yield per square meter - the aboveground biomass averaged r = 0.73, and in dry years it was higher (0.91) than in favorable ones (0.61 - 0.70) , between the harvest and the harvest index - r = 0.81 (on average). In dry years, the correlation coefficient increased to 0.92. Research data confirms the greatest importance of the mass of grain from one ear and the plant in the formation of grain yield per unit area in both dry and wet years. In dry years, the correlation coefficient between yield and grain mass per plant was on average r = 0.80; in favorable years, r = 0.69. The relationship between yield and grain mass from the ear was greater — r = 0.84 and r = 0.82, respectively. Consequently, the breeding significance of the aboveground mass and the productivity of the ear, as a criterion for the selection of the crop, especially increases in the dry years. They were basic in the selection.


2018 ◽  
Vol 2 (2) ◽  
pp. 137
Author(s):  
Muhammad Abi Berkah Nadi

Radin Inten II Airport is a national flight in Lampung Province. In this study using the technical analysis stated preference which is the approach by conveying the choice statement in the form of hypotheses to be assessed by the respondent. By using these techniques the researcher can fully control the hypothesized factors. To determine utility function for model forecasting in fulfilling request of traveler is used regression analysis with SPSS program. The analysis results obtained that the passengers of the dominant airport in the selection of modes of cost attributes than on other attributes. From the result of regression analysis, the influence of independent variable to the highest dependent variable is when the five attributes are used together with the R square value of 8.8%. The relationship between cost, time, headway, time acces and service with the selection of modes, the provision that states whether or not there is a decision. The significance of α = 0.05 with chi-square. And the result of Crame's V test average of 0.298 is around the middle, then the relationship is moderate enough.


2018 ◽  
Vol 69 (05) ◽  
pp. 381-389
Author(s):  
MENGÜÇ GAMZE SÜPÜREN ◽  
TEMEL EMRAH ◽  
BOZDOĞAN FARUK

This study was designed to explore the relationship between sunlight exposure and the mechanical properties of paragliding fabrics which have different colors, densities, yarn counts, and coating materials. This study exposed 5 different colors of paragliding fabrics (red, turquoise, dark blue, orange, and white) to intense sunlight for 150 hours during the summer from 9:00 a.m. to 3:00 p.m. for 5 days a week for 5 weeks. Before and after the UV radiation aging process, the air permeability, tensile strength, tear strength, and bursting strength tests were performed. Test results were also evaluated using statistical methods. According to the results, the fading of the turquoise fabric was found to be the highest among the studied fabrics. It was determined that there is a significant decrease in the mechanical properties of the fabrics after sunlight exposure. After aging, the fabrics become considerably weaker in the case of mechanical properties due to the degradation in both the dyestuff and macromolecular structure of the fiber


Sign in / Sign up

Export Citation Format

Share Document