Patterns of amplified restriction fragment polymorphism in natural populations and corresponding seed collections of plains rough fescue (Festuca hallii)

2007 ◽  
Vol 85 (5) ◽  
pp. 484-492 ◽  
Author(s):  
Jie Qiu ◽  
Yong-Bi Fu ◽  
Yuguang Bai ◽  
John F. Wilmshurst

Plains rough fescue ( Festuca hallii (Vasey) Piper) is a dominant native grass species in the Fescue Prairie region of North America that has undergone dramatic range reduction in the past century. Little is known about the genetic diversity of this species. The amplified restriction fragment polymorphism (AFLP) technique was applied to assess the comparative genetic diversity of six plains rough fescue populations in Manitoba and Saskatchewan and their corresponding seed collections. Three AFLP primer pairs were employed to screen 529 samples, representing about 30 samples each of reproductive tiller, vegetative tiller, and seed collected from each population. A total of 330 polymorphic AFLP bands were scored for each sample; their occurrence frequencies ranged from 0.01 to 0.99 and averaged around 0.47. Analysis of molecular variance revealed more than 90% of the total AFLP variation resided within natural populations (reproductive and vegetative tillers) and within seed samples. Four populations sampled from protected areas appear to have relatively lower within-population variation than two unprotected populations. Only 0.2% AFLP difference was revealed among the three tissue types examined. The tiller samples revealed slightly larger among-population variation than the seed samples and captured substantial associations of AFLP variation with population geographic distances. These findings are important for germplasm sampling for ex situ conservation, are useful for germplasm development for pasture seeding, and should facilitate the management of fragmented fescue populations.

2019 ◽  
Vol 17 (6) ◽  
pp. 536-544 ◽  
Author(s):  
Yves Bawin ◽  
Bart Panis ◽  
Samuel Vanden Abeele ◽  
Zhiying Li ◽  
Julie Sardos ◽  
...  

AbstractCrop wild relatives (CWRs) play a key role in crop breeding by providing beneficial trait characteristics for improvement of related crops. CWRs are more efficiently used in breeding if the plant material is genetically characterized, but the diversity in CWR genetic resources has often poorly been assessed. Seven seed collections of Musa balbisiana, an important CWR of dessert and cooking bananas, originating from three natural populations, two feral populations and two ex situ field collections were retrieved and their genetic diversity was quantified using 18 microsatellite markers to select core subsets that conserve the maximum genetic diversity. The highest genetic diversity was observed in the seed collections from natural populations of Yunnan, a region that is part of M. balbisiana's centre of origin. The seeds from the ex situ field collections were less genetically diverse, but contained unique variation with regards to the diversity in all seed collections. Seeds from feral populations displayed low genetic diversity. Core subsets that maximized genetic distance incorporated almost no seeds from the ex situ field collections. In contrast, core subsets that maximized allelic richness contained seeds from the ex situ field collections. We recommend the conservation and additional collection of seeds from natural populations, preferentially originating from the species' region of origin, and from multiple individuals in one population. We also suggest that the number of seeds used for ex situ seed bank regeneration must be much higher for the seed collections from natural populations.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 409-420 ◽  
Author(s):  
Lauren A. Dennhardt ◽  
Edward S. DeKeyser ◽  
Sarah A. Tennefos ◽  
Steven E. Travers

The study of colonizing and of dominant grass species is essential for prairie conservation efforts. We sought to answer how naturalized Kentucky bluegrass in the northern Great Plains has become successful in the last 20 yr despite its long history in the northern Great Plains. We tested for evidence of geographical differentiation using flow cytometry and microsatellite markers to ascertain the population genetics of Kentucky bluegrass. Across all tested wild populations, high levels of genetic diversity were detected along with moderate levels of structure. Mantel tests of geographical patterns were not significant. Using clonal assignment, we found two major clones that made up the majority of the tested wild populations. When we compared the wild individuals to pedigree cultivars, we found virtually no genetic overlap across all tests, which did not support our hypothesis of developed cultivars contributing to high genetic diversity in natural populations. Furthermore, DNA content tests indicated a narrow range in ploidy in wild populations compared with lawn cultivars, further supporting a hypothesis of divergence between wild and pedigree cultivars. These results indicate the recent invasion of Kentucky bluegrass in the northern Great Plains is not because of adaptation or propagule pressure, but rather likely an environmental or land use shift.


2014 ◽  
Vol 153 (6) ◽  
pp. 1006-1016 ◽  
Author(s):  
M. NEJI ◽  
F. GEUNA ◽  
W. TAAMALLI ◽  
Y. IBRAHIM ◽  
M. SMIDA ◽  
...  

SUMMARYBrachypodium hybridum belongs to the Poaceae grass subfamily. It has a close genetic relationship with temperate cereal crops, which means that it can be used as a model for temperate cereal and grass crops. In order to improve knowledge on the genetic diversity of this species, 145 lines of B. hybridum representative of nine populations and all the ecoregions of Tunisia were characterized on the basis of 18 morpho-phenologic features. The results show a considerable variation between populations and ecoregions in all traits studied. Variation was relatively higher for reproductive than vegetative traits. The majority of traits showed very low to high heritability with low border value for average length of spikelet (ALS) and an average value of 0·64. It is noticeable that high values of heritability were observed for most vegetative descriptors, with low values for reproductive ones. Differentiation between populations (QST) varied from 0·02 for ALS to 0·78 for average length of leaves with a mean value across traits of 0·4, which confirms the wide intra-population variation in Tunisian natural population of B. hybridum. Pairwise QST showed that the greatest differentiation among populations was registered between Ain Drahem and Jbel Zaghouan and the smallest between Haouria and Raoued. Overall, the Ain Draham population showed the largest differentiation from the rest of the populations. To infer the effect of geographic distribution of the species, a Mantel test was applied between observed pairwise differentiation and geographic distance between populations and between ecoregions: the results show a positive, but not significant, relationship. In addition a significant negative relationship was found between phenotypic diversity and altitude, indicating that genetic diversity decreased with increasing altitude. Taken together, the high levels of intra-population variation and the lack of correlation between genetic differentiation and geographic distribution suggest a potentially important rate of long-distance seed dispersal and confirm the role played by natural selection in the population structure of Tunisian natural populations of B. hybridum.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10521
Author(s):  
Núria Garcia-Jacas ◽  
Jèssica Requena ◽  
Sergi Massó ◽  
Roser Vilatersana ◽  
Cèsar Blanché ◽  
...  

Seseli farrenyi (Apiaceae) is an extremely narrow endemic plant, which is considered as one of the species of most conservation concern in Catalonia (NW Mediterranean Basin). Given the accelerated fragmentation and reduction of population size (of over 90%), the environmental agency of Catalonia is currently preparing a recovery plan that includes reinforcements of the extant populations. The present study is aimed at providing the necessary knowledge to carry out genetically-informed translocations, by using microsatellites as genetic markers. Fourteen microsatellites have been specifically developed for S. farrenyi, of which nine have been used. Besides the extant natural populations, the three ex situ collections that are known to exist of this species have also been studied, as they would be the donor sources for translocation activities. Our main finding is that levels of genetic diversity in the natural populations of S. farrenyi are still high (He = 0.605), most likely as a result of a predominantly outcrossing mating system in combination with the limited time elapsed since the population decline. However, population fragmentation is showing the first genetic signs, as the values of genetic differentiation are relatively high, and two well-differentiated genetic lineages have been found even in such a narrow geographic range. These genetic results provide important information when designing conservation management measures.


Author(s):  
Robby McMinn ◽  
Matti Salmela ◽  
Cynthia Weinig

Circadian clocks manifest adaptations to predictable 24-h fluctuations in the exogenous environment, but it has yet to be determined why the endogenous circadian period length in the wild varies genetically around the hypothesized optimum of 24 h. We quantified genetic variation in circadian period in leaf movement in 30 natural populations of the Arabidopsis relative Boechera stricta sampled within only 1° of latitude but across an elevational gradient spanning 2460−3300 m in the Rocky Mountains. Measuring over 3800 plants from 473 maternal families (7−20 per population), we found genetic variation that was of similar magnitude among vs. within populations, with population means varying between 21.9−24.9 h and maternal family means within populations varying by up to ~6 h. After statistically factoring out spatial autocorrelation at the habitat extremes, we found that elevation explained a significant proportion of genetic variation in circadian period such that higher-elevation populations had shorter mean period lengths and less within-population variation. Environmental data indicate that these spatial trends could be related to steep regional climatic gradients in temperature, precipitation, and their intra-annual variability. Our findings provide evidence that spatially fine-grained environmental heterogeneity contributes to naturally occurring genetic diversity in circadian traits in wild populations.


2021 ◽  
Author(s):  
Simon Kallow ◽  
Bart Panis ◽  
Toan Vu Dang ◽  
Tuong Vu Dang ◽  
Janet Paofa ◽  
...  

Background: Conservation of plant genetic resources, including the wild relatives of crops, plays an important and well recognised role in addressing some of the key challenges faced by humanity and the planet including ending hunger and biodiversity loss. However, the genetic diversity and representativeness of ex situ collections, especially that contained in seed collections, is often unknown. This limits meaningful assessments against conservation targets, impairs targeting of future collecting and limits their use. We assessed genetic representation of seed collections compared to source populations for three wild relatives of bananas and plantains. Focal species and sampling regions were Musa acuminata subsp. banksii (Papua New Guinea), M. balbisiana (Viet Nam) and M. maclayi s.l. (Bougainville, Papua New Guinea). We sequenced 445 samples using suites of 16-20 existing and newly developed taxon-specific polymorphic microsatellite markers. Samples of each species were from five populations in a region; 15 leaf samples and 16 seed samples from one infructescence ('bunch') for each population. Results: Allelic richness of seeds compared to populations was 51%, 81% and 93% (M. acuminata, M. balbisiana and M. maclayi respectively). Seed samples represented all common alleles in populations but omitted some rarer alleles. The number of collections required to achieve the 70% target of the Global Strategy for Plant Conservation was species dependent, relating to mating systems. Musa acuminata populations had low heterozygosity and diversity, indicating self-fertilization; many bunches were needed (>15) to represent regional alleles to 70%; over 90% of the alleles from a bunch are included in only two seeds. Musa maclayi was characteristically cross-fertilizing; only three bunches were needed to represent regional alleles; within a bunch, 16 seeds represent alleles. Musa balbisiana, considered cross-fertilized, had low genetic diversity; seeds of four bunches are needed to represent regional alleles; only two seeds represent alleles in a bunch. Conclusions: We demonstrate empirical measurement of representation of genetic material in seeds collections in ex situ conservation towards conservation targets. Species mating systems profoundly affected genetic representation in seed collections and therefore should be a primary consideration to maximize genetic representation. Results are applicable to sampling strategies for other wild species.


2002 ◽  
Vol 29 (12) ◽  
pp. 1445 ◽  
Author(s):  
Jason Q. D. Goodger ◽  
Ian E. Woodrow

The rare Australian tree Eucalyptus yarraensis Maiden & Cambage is cyanogenic, a quantitative trait potentially indicative of genetic diversity. Cyanogenic plants are capable of releasing cyanide from endogenous cyanide-containing compounds. Cyanide is toxic or deterrent to generalist or non-adapted specialist herbivores. Consequently, cyanogenic plants are afforded an effective means of chemical defense. In this paper we characterize quantitative variation in cyanogenic capability, known as cyanogenic polymorphism, in E. yarraensis for the first time. We show that the cyanogenic glucoside prunasin (R-mandelonitrile-β-D-glucoside) is the only cyanogenic compound in E. yarraensis foliage. We also show that two natural populations of E. yarraensis display extensive intra- and inter-population variation in foliar prunasin concentration. The high prunasin concentrations reported in this paper represent the highest yet recorded for mature eucalypt leaves. The cyanogenic variation could not be attributed to measured physical and chemical parameters, supporting the hypothesis that the variation is genetically based. A preliminary progeny trial also supports this hypothesis, with narrow sense heritability estimated at 1.17 from three half-sibling families. The variation in cyanogenic capability may be a useful tool in the development of a conservation strategy for the species.


2010 ◽  
Vol 20 (3) ◽  
pp. 153-161
Author(s):  
Jie Qiu ◽  
Yuguang Bai ◽  
Yong-Bi Fu ◽  
John F. Wilmshurst

AbstractTiming of seed germination influences plant lifetime fitness and can affect the ability of plant populations to colonize and persist in changing environments. However, the genetic variation of the seed germination response remains poorly understood. The amplified restriction fragment polymorphism (AFLP) technique was applied to characterize the genetic variation of germinated seeds collected from three Festuca hallii populations in the Canadian prairie. Three subpopulations with early, intermediate and late germination were identified from each population, based on germination tests at 10, 15 and 20°C in controlled growth chambers. Three AFLP primer pairs were employed to screen a total of 540 assayed seedling samples and 188 polymorphic AFLP bands were scored for each sample. None of the assayed AFLP bands were significantly associated with seed germination, but marked differences in estimates of mean band frequency were observed for various groups of germinating seeds under different test temperatures. Partitioning of the total AFLP variation showed that 5.9% AFLP variation was present among seeds of the three populations, 0.3% among seeds of three germination subpopulations, and 0.5% among seeds grouped for germination temperature. Genetic differentiation was significant among 27 groups of seeds representing population, germination timing and test temperature. Subpopulations with early and intermediate germination shared similar genetic backgrounds and were genetically differentiated from the late germination subpopulation. These results indicate that seed genotypes respond slightly differently to environmental variation, resulting in significant but weak genetic differentiation in the germination of F. hallii seeds. Implications for plant establishment and fescue restoration are discussed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Simon Kallow ◽  
Bart Panis ◽  
Dang Toan Vu ◽  
Tuong Dang Vu ◽  
Janet Paofa ◽  
...  

Abstract Background Conservation of plant genetic resources, including the wild relatives of crops, plays an important and well recognised role in addressing some of the key challenges faced by humanity and the planet including ending hunger and biodiversity loss. However, the genetic diversity and representativeness of ex situ collections, especially that contained in seed collections, is often unknown. This limits meaningful assessments against conservation targets, impairs targeting of future collecting and limits their use. We assessed genetic representation of seed collections compared to source populations for three wild relatives of bananas and plantains. Focal species and sampling regions were M. acuminata subsp. banksii (Papua New Guinea), M. balbisiana (Viet Nam) and M. maclayi s.l. (Bougainville, Papua New Guinea). We sequenced 445 samples using suites of 16–20 existing and newly developed taxon-specific polymorphic microsatellite markers. Samples of each species were from five populations in a region; 15 leaf samples from different individuals and 16 seed samples from one infructescence (‘bunch’) were analysed for each population. Results Allelic richness of seeds compared to populations was 51, 81 and 93% (M. acuminata, M. balbisiana and M. maclayi respectively). Seed samples represented all common alleles in populations but omitted some rarer alleles. The number of collections required to achieve the 70% target of the Global Strategy for Plant Conservation was species dependent, relating to mating systems. Musa acuminata populations had low heterozygosity and diversity, indicating self-fertilization; many bunches were needed (> 15) to represent regional alleles to 70%; over 90% of the alleles from a bunch are included in only two seeds. Musa maclayi was characteristically cross-fertilizing; only three bunches were needed to represent regional alleles; within a bunch, 16 seeds represent alleles. Musa balbisiana, considered cross-fertilized, had low genetic diversity; seeds of four bunches are needed to represent regional alleles; only two seeds represent alleles in a bunch. Conclusions We demonstrate empirical measurement of representation of genetic material in seeds collections in ex situ conservation towards conservation targets. Species mating systems profoundly affected genetic representation in seed collections and therefore should be a primary consideration to maximize genetic representation. Results are applicable to sampling strategies for other wild species.


Sign in / Sign up

Export Citation Format

Share Document