Simulated mammal browsing and host gender effects on dual mycorrhizal Salix repens

Botany ◽  
2011 ◽  
Vol 89 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Karita Saravesi ◽  
Annamari Markkola ◽  
Pasi Rautio ◽  
Juha Tuomi

We studied effects of simulated browsing and host plant gender on mycorrhizal status of dioecious Salix repens, forming both ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) symbioses. Owing to their lower biomass production, AM fungi may require less carbon from the host and have a competitive advantage over ECM fungi when carbon availability is reduced. Further, in dioecious plants, females have generally higher reproduction costs than males. Hence, herbivory may be especially detrimental to female plants and their ECM symbionts in favour of AM symbionts. Fifty percent shoot clipping increased the number of vegetative shoots but reduced the proportion of flowering shoots equally in male and female hosts. Despite clipping, ECM and AM colonization remained unchanged. However, slightly reduced soil fungal biomass was found in clipped patches of male S. repens. Our novel finding of AM spores occurring in the ECM fungal mantle of S. repens roots suggests that both mycorrhizal partners may coexist in the same root segment. Since no interaction between gender and clipping in fungal parameters was detected, we conclude that female and male S. repens are equally preferable hosts for fungal symbionts, even when carbohydrate availability has been decreased because of herbivory.

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 583
Author(s):  
Reda E. Abdelhameed ◽  
Nagwa I. Abu-Elsaad ◽  
Arafat Abdel Hamed Abdel Latef ◽  
Rabab A. Metwally

Important gaps in knowledge remain regarding the potential of nanoparticles (NPs) for plants, particularly the existence of helpful microorganisms, for instance, arbuscular mycorrhizal (AM) fungi present in the soil. Hence, more profound studies are required to distinguish the impact of NPs on plant growth inoculated with AM fungi and their role in NP uptake to develop smart nanotechnology implementations in crop improvement. Zinc ferrite (ZnFe2O4) NPs are prepared via the citrate technique and defined by X-ray diffraction (XRD) as well as transmission electron microscopy for several physical properties. The analysis of the XRD pattern confirmed the creation of a nanocrystalline structure with a crystallite size equal to 25.4 nm. The effects of ZnFe2O4 NP on AM fungi, growth and pigment content as well as nutrient uptake of pea (Pisum sativum) plants were assessed. ZnFe2O4 NP application caused a slight decrease in root colonization. However, its application showed an augmentation of 74.36% and 91.89% in AM pea plant shoots and roots’ fresh weights, respectively, compared to the control. Moreover, the synthesized ZnFe2O4 NP uptake by plant roots and their contents were enhanced by AM fungi. These findings suggest the safe use of ZnFe2O4 NPs in nano-agricultural applications for plant development with AM fungi.


Author(s):  
Yinli Bi ◽  
Linlin Xie ◽  
Zhigang Wang ◽  
Kun Wang ◽  
Wenwen Liu ◽  
...  

AbstractArbuscular mycorrhizal (AM) fungi can successfully enhance photosynthesis (Pn) and plants growth in agricultural or grassland ecosystems. However, how the symbionts affect species restoration in sunlight-intensive areas remains largely unexplored. Therefore, this study’s objective was to assess the effect of AM fungi on apricot seedling physiology, within a specific time period, in northwest China. In 2010, an experimental field was established in Shaanxi Province, northwest China. The experimental treatments included two AM fungi inoculation levels (0 or 100 g of AM fungal inoculum per seedling), three shade levels (1900, 1100, and 550 µmol m−2 s−1), and three ages (1, 3, and 5 years) of transplantation. We examined growth, Pn, and morphological indicators of apricot (Prunus sibirica L.) seedling performances in 2011, 2013, and 2015. The colonization rate in mycorrhizal seedlings with similar amounts of shade is higher than the corresponding controls. The mycorrhizal seedling biomass is significantly higher than the corresponding non-mycorrhizal seedling biomass. Generally, Pn, stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency are also significantly higher in the mycorrhizal seedlings. Moreover, mycorrhizal seedlings with light shade (LS) have the highest Pn. WUE is increased in non-mycorrhizal seedlings because of the reduction in Tr, while Tr is increased in mycorrhizal seedlings with shade. There is a significant increase in the N, P, and K fractions detected in roots compared with shoots. This means that LS had apparent benefits for mycorrhizal seedlings. Our results also indicate that AM fungi, combined with LS, exert a positive effect on apricot behavior.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Crosino ◽  
Elisa Moscato ◽  
Marco Blangetti ◽  
Gennaro Carotenuto ◽  
Federica Spina ◽  
...  

AbstractShort chain chitooligosaccharides (COs) are chitin derivative molecules involved in plant-fungus signaling during arbuscular mycorrhizal (AM) interactions. In host plants, COs activate a symbiotic signalling pathway that regulates AM-related gene expression. Furthermore, exogenous CO application was shown to promote AM establishment, with a major interest for agricultural applications of AM fungi as biofertilizers. Currently, the main source of commercial COs is from the shrimp processing industry, but purification costs and environmental concerns limit the convenience of this approach. In an attempt to find a low cost and low impact alternative, this work aimed to isolate, characterize and test the bioactivity of COs from selected strains of phylogenetically distant filamentous fungi: Pleurotus ostreatus, Cunninghamella bertholletiae and Trichoderma viride. Our optimized protocol successfully isolated short chain COs from lyophilized fungal biomass. Fungal COs were more acetylated and displayed a higher biological activity compared to shrimp-derived COs, a feature that—alongside low production costs—opens promising perspectives for the large scale use of COs in agriculture.


2021 ◽  
Vol 9 (2) ◽  
pp. 229
Author(s):  
Martti Vasar ◽  
John Davison ◽  
Siim-Kaarel Sepp ◽  
Maarja Öpik ◽  
Mari Moora ◽  
...  

Deserts cover a significant proportion of the Earth’s surface and continue to expand as a consequence of climate change. Mutualistic arbuscular mycorrhizal (AM) fungi are functionally important plant root symbionts, and may be particularly important in drought stressed systems such as deserts. Here we provide a first molecular characterization of the AM fungi occurring in several desert ecosystems worldwide. We sequenced AM fungal DNA from soil samples collected from deserts in six different regions of the globe using the primer pair WANDA-AML2 with Illumina MiSeq. We recorded altogether 50 AM fungal phylotypes. Glomeraceae was the most common family, while Claroideoglomeraceae, Diversisporaceae and Acaulosporaceae were represented with lower frequency and abundance. The most diverse site, with 35 virtual taxa (VT), was in the Israeli Negev desert. Sites representing harsh conditions yielded relatively few reads and low richness estimates, for example, a Saudi Arabian desert site where only three Diversispora VT were recorded. The AM fungal taxa recorded in the desert soils are mostly geographically and ecologically widespread. However, in four sites out of six, communities comprised more desert-affiliated taxa (according to the MaarjAM database) than expected at random. AM fungal VT present in samples were phylogenetically clustered compared with the global taxon pool, suggesting that nonrandom assembly processes, notably habitat filtering, may have shaped desert fungal assemblages.


2021 ◽  
Vol 22 (2) ◽  
pp. 711
Author(s):  
Irina V. Leppyanen ◽  
Olga A. Pavlova ◽  
Maria A. Vashurina ◽  
Andrey D. Bovin ◽  
Alexandra V. Dolgikh ◽  
...  

This study focused on the interactions of pea (Pisum sativum L.) plants with phytopathogenic and beneficial fungi. Here, we examined whether the lysin-motif (LysM) receptor-like kinase PsLYK9 is directly involved in the perception of long- and short-chain chitooligosaccharides (COs) released after hydrolysis of the cell walls of phytopathogenic fungi and identified in arbuscular mycorrhizal (AM) fungal exudates. The identification and analysis of pea mutants impaired in the lyk9 gene confirmed the involvement of PsLYK9 in symbiosis development with AM fungi. Additionally, PsLYK9 regulated the immune response and resistance to phytopathogenic fungi, suggesting its bifunctional role. The existence of co-receptors may provide explanations for the potential dual role of PsLYK9 in the regulation of interactions with pathogenic and AM fungi. Co-immunoprecipitation assay revealed that PsLYK9 and two proposed co-receptors, PsLYR4 and PsLYR3, can form complexes. Analysis of binding capacity showed that PsLYK9 and PsLYR4, synthesized as extracellular domains in insect cells, were able to bind the deacetylated (DA) oligomers CO5-DA–CO8-DA. Our results suggest that the receptor complex consisting of PsLYK9 and PsLYR4 can trigger a signal pathway that stimulates the immune response in peas. However, PsLYR3 seems not to be involved in the perception of CO4-5, as a possible co-receptor of PsLYK9.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manoj-Kumar Arthikala ◽  
Kalpana Nanjareddy ◽  
Lourdes Blanco ◽  
Xóchitl Alvarado-Affantranger ◽  
Miguel Lara

AbstractTarget of rapamycin (TOR) is a conserved central growth regulator in eukaryotes that has a key role in maintaining cellular nutrient and energy status. Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts that assist the plant in increasing nutrient absorption from the rhizosphere. However, the role of legume TOR in AM fungal symbiosis development has not been investigated. In this study, we examined the function of legume TOR in the development and formation of AM fungal symbiosis. RNA-interference-mediated knockdown of TOR transcripts in common bean (Phaseolus vulgaris) hairy roots notably suppressed AM fungus-induced lateral root formation by altering the expression of root meristem regulatory genes, i.e., UPB1, RGFs, and sulfur assimilation and S-phase genes. Mycorrhized PvTOR-knockdown roots had significantly more extraradical hyphae and hyphopodia than the control (empty vector) roots. Strong promoter activity of PvTOR was observed at the site of hyphal penetration and colonization. Colonization along the root length was affected in mycorrhized PvTOR-knockdown roots and the arbuscules were stunted. Furthermore, the expression of genes induced by AM symbiosis such as SWEET1, VPY, VAMP713, and STR was repressed under mycorrhized conditions in PvTOR-knockdown roots. Based on these observations, we conclude that PvTOR is a key player in regulating arbuscule development during AM symbiosis in P. vulgaris. These results provide insight into legume TOR as a potential regulatory factor influencing the symbiotic associations of P. vulgaris and other legumes.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Christopher Ngosong ◽  
Elke Gabriel ◽  
Liliane Ruess

Biomass estimation of arbuscular mycorrhiza (AM) fungi, widespread plant root symbionts, commonly employs lipid biomarkers, predominantly the fatty acid 16:1ω5. We briefly reviewed the application of this signature fatty acid, followed by a case study comparing biochemical markers with microscopic techniques in an arable soil following a change to AM non-host plants after 27 years of continuous host crops, that is, two successive cropping seasons with wheat followed by amaranth. After switching to the non-host amaranth, spore biomass estimated by the neutral lipid fatty acid (NLFA) 16:1ω5 decreased to almost nil, whereas microscopic spore counts decreased by about 50% only. In contrast, AM hyphal biomass assessed by the phospholipid (PLFA) 16:1ω5 was greater under amaranth than wheat. The application of PLFA 16:1ω5 as biomarker was hampered by background level derived from bacteria, and further enhanced by its incorporation from degrading spores used as microbial resource. Meanwhile, biochemical and morphological assessments showed negative correlation for spores and none for hyphal biomass. In conclusion, the NLFA 16:1ω5 appears to be a feasible indicator for AM fungi of the Glomales group in the complex field soils, whereas the use of PLFA 16:1ω5 for hyphae is unsuitable and should be restricted to controlled laboratory studies.


Botany ◽  
2014 ◽  
Vol 92 (4) ◽  
pp. 241-251 ◽  
Author(s):  
Ylva Lekberg ◽  
Roger T. Koide

Our knowledge of arbuscular mycorrhizal (AM) function is largely based on results from short-term studies in controlled environments. While these have provided many important insights into the potential effects of the symbiosis on the two symbionts and their communities, they may have also inadvertently led to faulty assumptions about the function of the symbiosis in natural settings. Here we highlight the consequences of failing to consider the AM symbiosis from the perspectives of community ecology and evolutionary biology. Also, we argue that by distinguishing between physiological and evolutionary viewpoints, we may be able to resolve controversies regarding the mutualistic vs. parasitic nature of the symbiosis. Further, while most AM research has emphasized resource transfers, primarily phosphate and carbohydrate, our perceptions of parasitism, cheating, bet-hedging, and partner choice would most likely change if we considered other services. Finally, to gain a fuller understanding of the role of the AM symbiosis in nature, we need to better integrate physiological processes of plants and their AM fungi with their naturally occurring temporal and spatial patterns. It is our hope that this article will generate some fruitful discussions and make a contribution toward this end.


2016 ◽  
Vol 4 (2) ◽  
pp. 191-197 ◽  
Author(s):  
Gamal M. Abdel-Fattah ◽  
Wafaa M. Shukry ◽  
Mahmoud M.B. Shokr ◽  
Mai A. Ahmed

This study aimed to investigate the effects of arbuscular mycorrhizal (AM) fungi with different levels of NPK fertilizers on yield production of common bean plants which common bean plants were subjected to five levels of NPK fertilizers (0, 25, 50, 75, 100 %). Application of AMF significantly increased the growth and yield components of common beans with minimized the levels of NPK comparing to equivalents non-mycorrhizal ones. The results obtained revealed that inoculation with AMF and the concentrations 50% and 75% of NPK with AMF are the greater than other concentrations and non-mycorrhizal plants. Mycorrhizal Common bean plants had significantly higher number of pods, length of one pod, pods weight, 100 seeds weight, weight of seed/plant and intensity of mycorrhizal colonization(M%) . Concentrations of nutrients (N, P, K, Ca and Mg) and total carbohydrates, crude protein and mycorrhizal dependency of some yield parameters were significantly increased in mycorrhizal plants at different NPK levels when comparing to those of non-mycorrhizal plants paticularly at (50% and 75%) concentration of NPK, but lower Na concentration in mycorrhizal common bean seeds than those of non-mycorrhizal.Int J Appl Sci Biotechnol, Vol 4(2): 191-197


2015 ◽  
Vol 43 (2) ◽  
pp. 488-493
Author(s):  
Zhaoyong SHI ◽  
Xubin YIN ◽  
Bede MICKAN ◽  
Fayuan WANG ◽  
Ying ZHANG ◽  
...  

Arbuscular mycorrhiza (AM) fungi are considered as an important factor in predicting plants and ecosystem responses to climate changes on a global scale. The Tibetan Plateau is the highest region on Earth with abundant natural resources and one of the most sensitive region to climate changes. To evaluate the complex response of arbuscular mycorrhizal fungi colonization and spore density to climate changes, a reciprocal translocation experiment was employed in Tibetan Plateau. The reciprocal translocation of quadrats to AM colonization and spore density were dynamic. Mycorrhizal colonization frequency presented contrary changed trend with elevations of quadrat translocation. Colonization frequency reduced or increased in majority quadrats translocated from low to high or from high to low elevation. Responses of colonization intensity to translocation of quadrats were more sensitive than colonization frequency. Arbuscular colonization showed inconsistent trend in increased or decreased quadrat. Vesicle colonization decreased with changed of quadrat from low to high elevations. However, no significant trend was observed. Although spore density was dynamic with signs of decreasing or increasing in translocated quadrats, the majority enhanced and declined respectively in descent and ascent quadrat treatments. It is crucial to understand the interactions between AM fungi and prairie grasses to accurately predict effects of climate change on these diverse and sensitive ecosystems. This study provided an opportunity for understanding the effect of climate changes on AM fungi.


Sign in / Sign up

Export Citation Format

Share Document