THE MICROSCOPIC WOOD STRUCTURE OF NORTH AMERICAN SPECIES OF CHAMAECYPARIS

1952 ◽  
Vol 30 (2) ◽  
pp. 170-187 ◽  
Author(s):  
M. W. Bannan

Trends in variation in different parts of the tree with regard to such anatomical features as tracheid and ray cell dimensions, size and distribution of rays, size and arrangement of pits, and thickness of cell walls resemble those recorded for other Cupressaceae. Comparative data relating to homologous wood samples show slight differences in mean values between the three American species of Chamaecyparis, but the intraspecific variability is usually so extensive that the specific ranges overlap widely. No single microscopic character seems completely reliable for diagnostic purposes, but certain structural features are valuable when used together. These are the frequency of ray tracheids in newly formed rays, the thickness of the horizontal and end walls of ray parenchyma cells, the number of pits per crossing field, and the height/width ratio of ray cells viewed tangentially.

1954 ◽  
Vol 32 (1) ◽  
pp. 285-307 ◽  
Author(s):  
M. W. Bannan

The microscopic wood structure of nine species of Cupressus native to Arizona and California was studied from approximately 700 samples. Tracheid and ray cell dimensions, size and distribution of rays, size and arrangement of pits, and thickness of cell walls were found to vary in different parts of the tree, the trends resembling those in other Cupressaceae. Comparisons of the data relating to homologous wood samples revealed slight interspecific differences in mean values for some structural features, but the range of intraspecific variability was usually broad. No single microscopic character was discovered which alone could be considered reliable for species differentiation, but certain features such as the frequency of rays, size of crossing field pits, size of tracheids and ray cells, and thickness of ray cell walls may prove valuable for diagnostic purposes when used together. As in the case of morphological characteristics, species differentiation apparently rests upon slight differences in several characters rather than invariable or marked divergence in single features.


2019 ◽  
Vol 26 (35) ◽  
pp. 6399-6411 ◽  
Author(s):  
Cláudia Nunes ◽  
Manuel A. Coimbra

Marine environments have a high quantity and diversity of sulfated polysaccharides. In coastal regions brown algae are the most abundant biomass producers and their cell walls have fucosecontaining sulfated polysaccharides (FCSP), known as fucans and/or fucoidans. These sulfated compounds have been widely researched for their biomedical properties, namely the immunomodulatory, haemostasis, pathogen inhibition, anti-inflammatory capacity, and antitumoral. These activities are probably due to their ability to mimic the carbohydrate moieties of mammalian glycosaminoglycans. Therefore, the FCSP are interesting compounds for application in health-related subjects, mainly for developing scaffolds for delivery systems or tissue regeneration. FCSP showed potential for these applications also due to their ability to form stable 3D structures with other polymers able to entrap therapeutic agents or cell and growth factors, besides their biocompatibility and biodegradability. However, for the clinical use of these biopolymers well-defined reproducible molecules are required in order to accurately establish relationships between structural features and human health applications.


1983 ◽  
Vol 34 (3) ◽  
pp. 241 ◽  
Author(s):  
CW Ford

Stem cell walls of pangola grass (Digitaria decumbens) were ground to two particle sizes (c. 1 and 0.1 mm diameter), and incubated with cellulase (ex. Trichoderma viride) for varying times before and after delignification. Total cell walls finely ground (0.1 mm) with a Spex Shatterbox mill were initially degraded more rapidly (to 24 h) than delignified 1 mm particles. Thereafter the delignified material was solubilized to a greater extent. Subsequent specific determinations of cell wall polysaccharides indicated that delignification increased the rate of hemicellulose degradation to a greater extent than did particle size reduction, whereas the opposite was found for cellulose. The difference between delignified and Spex-ground residues, in terms of the amount of polysaccharide digested, was much greater for cellulose than hemicellulose. It is concluded that structural features play a more important role in limiting cellulase degradation of cellulose than does association with lignin, the reverse being so for hemicellulose.


1977 ◽  
Vol 55 (20) ◽  
pp. 2559-2564 ◽  
Author(s):  
R. A. Gregory

The ratio of ray and ray cell initials to fusiform initials of the vascular cambium relative to radial growth rate as reflected in the secondary xylem was studied in stems of Acer saccharum Marsh. Ray initials increased in size as they aged, slowly when growth rate was low, rapidly when it was high, but there was little fluctuation in the number of rays per unit of tangential area; as the cambium increased in circumference, the older, larger rays diverged and new small rays arose in intervening areas, thus maintaining a uniform unit area population independent of growth rate. However, since ray size increased rapidly when growth rate was high, the unit area population of ray cells rose abruptly with accelerating growth rate: the relative volume of xylem ray tissue rose from 8.6 to 12.7% of the total xylem volume when annual ring width increased from 1 to 7 mm. When fast growth was not maintained, the unit area population of ray cells declined slowly as the large rays diverged.


IAWA Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Kishore S. Rajput ◽  
Amit D. Gondaliya ◽  
Roger Moya

Abstract The lianas in the family Sapindaceae are known for their unique secondary growth which differs from climbing species in other plant families in terms of their cambial variants. The present study deals with the stem anatomy of self-supporting and lianescent habit, development of phloem wedges, the ontogeny of cambial variants and structure of the secondary xylem in the stems of Serjania mexicana (L.) Willd. Thick stems (15–20 mm) were characterized by the presence of distinct phloem wedges and tangentially wide neo-formed cambial cylinders. As the stem diameter increases, there is a proportional increase in the number of phloem wedges and neo-formed vascular cylinders. The parenchymatous (pericyclic) cells external to phloem wedges that are located on the inner margin of the pericyclic fibres undergo dedifferentiation, become meristematic and form small segments of cambial cylinders. These cambia extend tangentially into wide and large segments of neoformations. Structurally, the secondary xylem and phloem of the neo-formed vascular cylinders remain similar to the derivatives produced by the regular vascular cambium. The secondary xylem is composed of vessels (wide and narrow), fibres, axial and ray parenchyma cells. The occurrence of perforated ray cells is a common feature in both regular and variant xylem.


2020 ◽  
pp. 59-71
Author(s):  
Evgeniy Gennad'yevich Shakhmatov ◽  
Elena Nikolayevna Makarova

The present work aimed to determine structural features of polysaccharides derived from the P. abies foliage by extraction with a (NH4)2C2O4 solution. The isolated polysaccharide was studied in detail by the methods of ion exchange chromatography, partial acidic hydrolys and NMR spectroscopy. It was shown that this polysaccharide contained polymers of various structures. The major constituents of PAO were low-methoxyl and low-acetylated 1,4-a-D-galacturonan and by minor parts of partly 2-O- and/or 3-O- acetylated rhamnogalacturonan-I (RG-I). The side carbohydrate chains of the branched region of RG-I were represented predominantly by highly branched 1,5-a-L-arabinan and minor portions of 1,4-β-D-galactan. In addition to the dominant pectins, polysaccharide PAO contained binding glycans of the glucomannans class, which indicated a close interaction of these polysaccharides in the cell walls. Thus, the structural features of pectin woody P. abies, extracted with a solution of (NH4)2C2O4, were first determined. It can be concluded that P. abies woody greens, a large tonnage waste from the wood processing industry, can be considered as a potential source of pectin substances. The results of studying the structure of components of woody green P. abies can be the basis for the development and improvement of new technologies for the integrated use of this raw material.


2020 ◽  
Vol 13 (3) ◽  
pp. 268-278
Author(s):  
Dmitriy Andreevich Severinov ◽  
Gennady Alekseevich Bondarev ◽  
Vyacheslav Alexandrovich Lipatov ◽  
Araik Rubenovich Saakyan

Currently, mortality rate in the liver and spleen injuries remains high, despite the present-day level of advances in the diagnosis and treatment of surgical diseases. Damage to parenchymal organs leads to the development of intra-abdominal bleeding. The severity of bleeding depends on the anatomical features of the blood supply to the damaged organ and the massiveness of the lesion, the type of traumatic agent. Intraoperative provision of reliable hemostasis is a significant problem in liver and spleen injuries. This paper summarizes the experience of Russian and foreign experts on surgical treatment of various types of parenchymal organ injuries. Stitching, adhesive compositions, biological and synthetic films, non-contact methods are used to achieve the final intraoperative hemostasis for parenchymal organ injuries; electrocoagulation is also very popular. Currently, the issues of surgical treatment tactics of spleen and liver injuries are not fully resolved. The search for optimal options, as well as technical advancement of organ-preserving operation techniques involving parenchymal organs, remains relevant. This depends on the structural features of these organs, availability of the methods of local hemostasis listed in this paper and surgeon's knowledge and manual skills. Moreover, at present, hemostatic application agents are widely introduced into clinical practice, parenchymal bleeding caused by superficial planar injuries of parenchymal organs being the main indication for the use of these agents.


1983 ◽  
Vol 5 (5) ◽  
pp. 161
Author(s):  
José Newton Cardoso Marchiori

This paper deals with the description of general, macroscopic and microscopic anatomy of Colletia paradoxa (Spreng.) Escalante, an aphyllous and xerophilous shrub from Rio Grande do Sul (Brazil). Pores of very small diameter, very short vessel elements, spiral thickenings and simple perforation plates in vessels, non sptate libriform fibers, scanty paratracheal axial paranchyma, and Heterogeneous II rays were observed in the wood.. Perforated cells are also common in rays. The presence of perforated ray cells and anatomical features of the vessel elements are discussed with respect to eco-physiological aspect of the plant and wood anatomy literature.


1990 ◽  
Vol 269 (2) ◽  
pp. 393-402 ◽  
Author(s):  
P Ryden ◽  
R R Selvendran

1. Polymers were solubilized from the cell walls of parenchyma from mature runner-bean pods with minimum degradation by successive extractions with cyclohexane-trans-1,2-diamine-NNN′N′-tetra-acetate (CDTA), Na2CO3 and KOH to leave the alpha-cellulose residue, which contained cross-linked pectic polysaccharides and Hyp-rich glycoproteins. These were solubilized with chlorite/acetic acid and cellulase. The polymers were fractionated by anion-exchange chromatography, and fractions were subjected to methylation analysis. 2. The pectic polysaccharides differed in their ease of extraction, and a small proportion were highly cross-linked. The bulk of the pectic polysaccharides solubilized by CDTA and Na2CO3 were less branched than those solubilized by KOH. There was good evidence that most of the pectic polysaccharides were not degraded during extraction. 3. The protein-containing fractions included Hyp-rich and Hyp-poor glycoproteins associated with easily extractable pectic polysaccharides, Hyp-rich glycoproteins solubilized with 4M-KOH+borate, the bulk of which were not associated with pectic polysaccharides, and highly cross-linked Hyp-rich glycoproteins. 4. Isodityrosine was not detected, suggesting that it does not have a (major) cross-linking role in these walls. Instead, it is suggested that phenolics, presumably linked to C-5 of 3,5-linked Araf residues of Hyp-rich glycoproteins, serve to cross-link some of the polymers. 5. There were two main types of xyloglucan, with different degrees of branching. The bulk of the less branched xyloglucans were solubilized by more-concentrated alkali. The anomeric configurations of the sugars in one of the highly branched xyloglucans were determined by 13C-n.m.r. spectroscopy. 6. The structural features of the cell-wall polymers and complexes are discussed in relation to the structure of the cell walls of parenchyma tissues.


2018 ◽  
Vol 39 (1) ◽  
pp. 11-20
Author(s):  
Jianli Xiong ◽  
Yanan Zhang ◽  
Yuanye Sun ◽  
Qiangqiang Liu ◽  
Chaojie Fan ◽  
...  

Hematological parameters are key to reflect the health status of animals and their physiological adaptation to the environment. However, few studies focused on the inter- and intra-specific variations of hematological parameters in hynobiid salamanders. Here, we examined the hematological parameters of the stream salamander,Batrachuperus pinchonii, originating from two different altitudinal populations to explore their intra-specific variation. Sexual dimorphism is only present in the erythrocyte count and males have higher mean values than females. The morphometric values of erythrocyte, hemoglobin concentration, and erythrocyte count of the high altitudinal (Jiajin) population were smaller than those of the lower altitudinal (Sandaoping) population; however, a significant difference between two populations was only revealed in the case of erythrocyte length via ANOVA. The results of linear regression showed that a significant relationship was present between body condition and erythrocyte length as well as the erythrocyte length to erythrocyte width ratio. Our findings suggest that the features of hematological parameters inB. pinchoniiare reflected in the size of erythrocyte, and neither in erythrocyte count nor in hemoglobin concentration. These results provide a foundation for assessing and monitoring the health status of this salamander species, and furthermore, for understanding the physiological basis of altitudinal adaptation.


Sign in / Sign up

Export Citation Format

Share Document