Net aerial primary production of a James Bay, Ontario, salt marsh

1982 ◽  
Vol 60 (7) ◽  
pp. 1060-1067 ◽  
Author(s):  
Walter A. Glooschenko ◽  
Nancy S. Harper

Aboveground plant biomass and litter measurements were made at four intervals between mid-June and late August 1977 on a subarctic salt marsh located at North Point on the southwestern shore of James Bay, Ontario. We sampled six salt marsh zones ranging from a lower intertidal flat dominated by the grass Puccinellia phryganodes to the edge of willow thickets characterized by Juncus balticus.Peak aboveground biomass was reached in nearly all zones by early August, and ranged from 119.3 to 240.4 g dry weight∙m−2. Litter accumulated in all zones except the lower two zones which were subjected to tidal flows. The highest zone where Juncus balticus occurred had the highest litter mass, 572.8 g dry weight∙m−2, while the lowest, 24.7 g∙m−2, occurred in the lowest zone. Estimates of net aerial primary productivity using Smalley's method ranged from 119.3 g∙m−2 in the upper salt marsh to 384.0 g∙m−2 in the zone dominated by Juncus balticus. The mean marsh net aerial primary productivity was 227.7 g∙m−2 which was low compared with other salt marsh data. The 1977 aboveground biomass was lower in 1976, probably as a result of a cooler summer.


2021 ◽  
Vol 18 (2) ◽  
pp. 403-411
Author(s):  
Svenja Reents ◽  
Peter Mueller ◽  
Hao Tang ◽  
Kai Jensen ◽  
Stefanie Nolte

Abstract. The persistence of tidal wetland ecosystems like salt marshes is threatened by human interventions and climate change. In particular, the threat of accelerated sea level rise (SLR) has increasingly gained the attention of the scientific community recently. However, studies investigating the effect of SLR on plants and vertical marsh accretion are usually restricted to the species or community level and do not consider phenotypic plasticity or genetic diversity. To investigate the response of genotypes within the same salt-marsh species to SLR, we used two known genotypes of Elymus athericus (Link) Kerguélen (low-marsh and high-marsh genotypes). In a factorial marsh organ experiment we exposed both genotypes to different flooding frequencies and quantified plant growth parameters. With increasing flooding frequency, the low-marsh genotype showed higher aboveground biomass production compared to the high-marsh genotype. Additionally, the low-marsh genotype generally formed longer rhizomes, shoots and leaves, regardless of flooding frequency. Belowground biomass of both genotypes decreased with increasing flooding frequency. We conclude that the low-marsh genotype is better adapted to higher flooding frequencies through its ability to allocate resources from below- to aboveground biomass. Given the strong control of plant biomass production on salt-marsh accretion, we argue that these findings yield important implications for our understanding of ecosystem resilience to SLR as well as plant species distribution in salt marshes.



2019 ◽  
Vol 11 (17) ◽  
pp. 2020 ◽  
Author(s):  
Gwen J. Miller ◽  
James T. Morris ◽  
Cuizhen Wang

Coastal salt marshes are biologically productive ecosystems that generate and sequester significant quantities of organic matter. Plant biomass varies spatially within a salt marsh and it is tedious and often logistically impractical to quantify biomass from field measurements across an entire landscape. Satellite data are useful for estimating aboveground biomass, however, high-resolution data are needed to resolve the spatial details within a salt marsh. This study used 3-m resolution multispectral data provided by Planet to estimate aboveground biomass within two salt marshes, North Inlet-Winyah Bay (North Inlet) National Estuary Research Reserve, and Plum Island Ecosystems (PIE) Long-Term Ecological Research site. The Akaike information criterion analysis was performed to test the fidelity of several alternative models. A combination of the modified soil vegetation index 2 (MSAVI2) and the visible difference vegetation index (VDVI) gave the best fit to the square root-normalized biomass data collected in the field at North Inlet (Willmott’s index of agreement d = 0.74, RMSE = 223.38 g/m2, AICw = 0.3848). An acceptable model was not found among all models tested for PIE data, possibly because the sample size at PIE was too small, samples were collected over a limited vertical range, in a different season, and from areas with variable canopy architecture. For North Inlet, a model-derived landscape scale biomass map showed differences in biomass density among sites, years, and showed a robust relationship between elevation and biomass. The growth curve established in this study is particularly useful as an input for biogeomorphic models of marsh development. This study showed that, used in an appropriate model with calibration, Planet data are suitable for computing and mapping aboveground biomass at high resolution on a landscape scale, which is needed to better understand spatial and temporal trends in salt marsh primary production.



2020 ◽  
Author(s):  
Svenja Reents ◽  
Peter Mueller ◽  
Hao Tang ◽  
Kai Jensen ◽  
Stefanie Nolte

Abstract. The persistence of tidal wetland ecosystems like salt marshes is threatened by human interventions and climate change. Particularly the threat of accelerated sea level rise (SLR) has recently gained increasing attention by the scientific community. However, studies investigating the effect of SLR on plants and vertical marsh accretion are usually restricted to the species or community level and do not consider phenotypic plasticity or genetic diversity. To investigate the response of genotypes within the same salt-marsh species to SLR, we used two known genotypes of Elymus athericus (Link) Kerguélen (low-marsh and high-marsh genotypes). In a factorial marsh organ experiment we exposed both genotypes to different flooding frequencies and quantified plant growth parameters. With increasing flooding frequency, the low-marsh genotype showed a higher aboveground biomass production compared to the high-marsh genotype. Additionally, the low-marsh genotype generally formed longer rhizomes, shoots and leaves, regardless of flooding frequency. Belowground biomass of both genotypes decreased with flooding frequency. We conclude that the low-marsh genotype is better adapted to higher flooding frequencies through its ability to allocate resources from below- to aboveground biomass. Given the strong control of plant biomass production on salt-marsh accretion, we argue that these findings yield important implications for our understanding of ecosystem resilience to SLR as well as plant-species distribution in salt marshes.



1969 ◽  
Vol 26 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Ulf Lie

During the period May 28 to August 1, 1967, benthic infauna was collected at 37 stations in Puget Sound and off the coast of Washington. When large but rare species were excluded from the samples, the variability in standing crop (ash-free dry weight) among replicate samples was less than among means from different stations. The mean standing crop for the offshore stations was 1.92 g/m2, which is comparable with the standing crop on the shelf in the Gulf of Alaska, but less than half the mean standing crop for the Puget Sound stations; the difference may be explained in part by differences, previously reported, in primary productivity of the water masses. For the offshore stations there was a weak trend of increasing standing crop with depth. The standing crop at the shallow-water offshore stations, in substrates characterized as fine sand, was dominated by crustaceans and small lamellibranchs, whereas at the deeper stations, in sediments with high percentages of silt and clay, polychaetes and echinoderms were the most important contributors.



2017 ◽  
Vol 23 (2) ◽  
Author(s):  
AFSHAN ANJUM BABA ◽  
SYED NASEEM UL-ZAFAR GEELANI ◽  
ISHRAT SALEEM ◽  
MOHIT HUSAIN ◽  
PERVEZ AHMAD KHAN ◽  
...  

The plant biomass for protected areas was maximum in summer (1221.56 g/m2) and minimum in winter (290.62 g/m2) as against grazed areas having maximum value 590.81 g/m2 in autumn and minimum 183.75 g/m2 in winter. Study revealed that at Protected site (Kanidajan) the above ground biomass ranged was from a minimum (1.11 t ha-1) in the spring season to a maximum (4.58 t ha-1) in the summer season while at Grazed site (Yousmarag), the aboveground biomass varied from a minimum (0.54 t ha-1) in the spring season to a maximum of 1.48 t ha-1 in summer seasonandat Seed sown site (Badipora), the lowest value of aboveground biomass obtained was 4.46 t ha-1 in spring while as the highest (7.98 t ha-1) was obtained in summer.



2005 ◽  
Vol 53 (4) ◽  
pp. 405-415 ◽  
Author(s):  
P. Janaki ◽  
T. M. Thiyagarajan

Field experiments were conducted during 1998 and 1999 in June-September with rice variety ASD18 at the wetland farm, Tamil Nadu Agricultural University, Coimbatore, India to find out theeffect of N management approaches and planting densities on N accumulation by transplanted rice in a split plot design.The main plot consisted of three plant populations (33, 66 and 100 hills m-2) and the sub-plot treatments of five N management approaches. The results revealed thatthe average N uptake in roots and aboveground biomass progressively increased with growth stages. The mean root and aboveground biomass Nuptake were 26.1 to 130.6 and 6.4 to 17.8 kg ha-1, respectively. The N uptake of grain and straw was higher in theSesbania rostratagreen manuring + 150 kg N treatment, but it was not effective in increasing the grain yield. The mean total N uptake was found to be significantly lower at 33 hills m-2(76.9 kg ha-1) and increased with an increase in planting density (100.9 and 117.2 kg ha-1at 66 and 100 hills m-2density). N application had a significant influence on N uptake and the time course of N uptake in all the SPAD-guided N approaches. A significant regression coefficient was observed between the crop N uptake and grain yield. The relationship between cumulative N uptake at the flowering stage and the grain yield was quadratic at all three densities. The N uptake rate (µN) was maximum during the active tillering to panicle initiation period and declined sharply after that. In general, µNincreased with an increase in planting density and the increase was significant up to the panicle initiation to flowering period.thereafter, the N uptake rate was similar at densities of 66 and 100 hills m-2.



HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 485b-485
Author(s):  
Lisa M. Barry ◽  
Michael N. Dana

Nurse crops are often recommended in prairie restoration planting. This work investigated several alternative nurse crops to determine their utility in prairie planting. Nurse crops were composed of increasing densities (900, 1800, or 2700 seeds/m2) of partridge pea, spring oats, spring barley, Canada wild rye, or equal mixtures of partridge pea and one of the grasses. The experimental design was a randomized complete-block set in two sites with three blocks per site and 48 treatments per block. Each 3 × 3-m plot contained 1 m2 planted in Dec. 1995 or Mar. 1996 with an equal mix of seven prairie species. The nurse crops were sown over each nine square meter area in April 1996. Plots lacking nurse crops served as controls. Evaluated data consisted of weed pressure rankings and weed and prairie plant dry weight. Nurse crop treatments had a significant effect on weed pressure in both sites. Barley (1800 and 2700 seeds/m2) as well as partridge pea + barley (2700 seeds/m2) were most effective at reducing weed pressure. When weed and prairie plant biomass values were compared, a significant difference was observed for site quality and planting season. Prairie plant establishment was significantly greater in the poorly drained, less-fertile site and spring-sown plots in both sites had significantly higher prairie biomass values. Overall, after two seasons, there was no advantage in using nurse crops over the control. Among nurse crop treatments, oats were most effective in reducing weed competition and enhancing prairie plant growth.



2021 ◽  
Vol 13 (8) ◽  
pp. 1427
Author(s):  
Kasturi Devi Kanniah ◽  
Chuen Siang Kang ◽  
Sahadev Sharma ◽  
A. Aldrie Amir

Mangrove is classified as an important ecosystem along the shorelines of tropical and subtropical landmasses, which are being degraded at an alarming rate despite numerous international treaties having been agreed. Iskandar Malaysia (IM) is a fast-growing economic region in southern Peninsular Malaysia, where three Ramsar Sites are located. Since the beginning of the 21st century (2000–2019), a total loss of 2907.29 ha of mangrove area has been estimated based on medium-high resolution remote sensing data. This corresponds to an annual loss rate of 1.12%, which is higher than the world mangrove depletion rate. The causes of mangrove loss were identified as land conversion to urban, plantations, and aquaculture activities, where large mangrove areas were shattered into many smaller patches. Fragmentation analysis over the mangrove area shows a reduction in the mean patch size (from 105 ha to 27 ha) and an increase in the number of mangrove patches (130 to 402), edge, and shape complexity, where smaller and isolated mangrove patches were found to be related to the rapid development of IM region. The Moderate Resolution Imaging Spectro-radiometer (MODIS) Leaf Area Index (LAI) and Gross Primary Productivity (GPP) products were used to inspect the impact of fragmentation on the mangrove ecosystem process. The mean LAI and GPP of mangrove areas that had not undergone any land cover changes over the years showed an increase from 3.03 to 3.55 (LAI) and 5.81 g C m−2 to 6.73 g C m−2 (GPP), highlighting the ability of the mangrove forest to assimilate CO2 when it is not disturbed. Similarly, GPP also increased over the gained areas (from 1.88 g C m−2 to 2.78 g C m−2). Meanwhile, areas that lost mangroves, but replaced them with oil palm, had decreased mean LAI from 2.99 to 2.62. In fragmented mangrove patches an increase in GPP was recorded, and this could be due to the smaller patches (<9 ha) and their edge effects where abundance of solar radiation along the edges of the patches may increase productivity. The impact on GPP due to fragmentation is found to rely on the type of land transformation and patch characteristics (size, edge, and shape complexity). The preservation of mangrove forests in a rapidly developing region such as IM is vital to ensure ecosystem, ecology, environment, and biodiversity conservation, in addition to providing economical revenue and supporting human activities.



Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1766 ◽  
Author(s):  
Alessandro Suardi ◽  
Sergio Saia ◽  
Walter Stefanoni ◽  
Carina Gunnarsson ◽  
Martin Sundberg ◽  
...  

The collection of residues from staple crop may contribute to meet EU regulations in renewable energy production without harming soil quality. At a global scale, chaff may have great potential to be used as a bioenergy source. However, chaff is not usually collected, and its loss can consist of up to one-fifth of the residual biomass harvestable. In the present work, a spreader able to manage the chaff (either spreading [SPR] on the soil aside to the straw swath or admixed [ADM] with the straw) at varying threshing conditions (with either 1 or 2 threshing rotors [1R and 2R, respectively] in the combine, which affects the mean length of the straw pieces). The fractions of the biomass available in field (grain, chaff, straw, and stubble) were measured, along with the performances of both grain harvesting and baling operations. Admixing chaff allowed for a slightly higher amount of straw fresh weight baled compared to SPR (+336 kg straw ha−1), but such result was not evident on a dry weight basis. At the one time, admixing chaff reduced the material capacity of the combine by 12.9%. Using 2R compared to 1R strongly reduced the length of the straw pieces, and increased the bale unit weight; however, it reduced the field efficiency of the grain harvesting operations by 11.9%. On average, the straw loss did not vary by the treatments applied and was 44% of the total residues available (computed excluding the stubble). In conclusion, admixing of chaff with straw is an option to increase the residues collected without compromising grain harvesting and straw baling efficiencies; in addition, it can reduce the energy needs for the bale logistics. According to the present data, improving the chaff collection can allow halving the loss of residues. However, further studies are needed to optimise both the chaff and the straw recoveries.



2013 ◽  
Vol 726-731 ◽  
pp. 3803-3806
Author(s):  
Bing Ru Liu ◽  
Jun Long Yang

In order to revel aboveground biomass of R. soongorica shrub effect on soil moisture and nutrients spatial distribution, and explore mechanism of the changes of soil moisture and nutrients, soil moisture content, pH, soil organic carbon (SOC) and total nitrogen (TN) at three soil layers (0-10cm,10-20cm, and 20-40cm) along five plant biomass gradients of R. soongorica were investigated. The results showed that soil moisture content increased with depth under the same plant biomass, and increased with plant biomass. Soil nutrient properties were evidently influenced with plant biomass, while decreased with depth. SOC and TN were highest in the top soil layer (0-10 cm), but TN of 10-20cm layer has no significant differences (P < 0.05). Moreover, soil nutrient contents were accumulated very slowly. These suggests that the requirement to soil organic matter is not so high and could be adapted well to the desert and barren soil, and the desert plant R. soongorica could be acted as an important species to restore vegetation and ameliorate the eco-environment.



Sign in / Sign up

Export Citation Format

Share Document