Cell degeneration and gill remodelling during basidiocarp development in the fungus Coprinus cinereus

1991 ◽  
Vol 69 (6) ◽  
pp. 1161-1169 ◽  
Author(s):  
Benjamin C. Lu

The early mushroom gill development in a primordium of Coprinus cinereus was studied by electron microscopy. Extensive cell degeneration and cell death were found in gill cavities but not within gill domains. These degenerative cells were found to contain multivesicular and membranous residual bodies, suggesting that the multivesicular bodies are part of the cell degeneration. Cellular debris was observed in intercellular spaces probably as a consequence of cell lysis. The presence of multivesicular bodies was also observed in cells shortly before Coprinus basidiocarps underwent autolysis: a high dose of hydrolytic enzymes can be extracted from such basidiocarps. The high numbers of multivesicular bodies, the membranous residual bodies, and the cellular debris in the primordial tissues are manifestations of cell degeneration that may be a prerequisite to gill remodelling during early primordial development. Key words: cell degeneration, gill remodelling, multivesicular body, residual body, mushroom development.

Reproduction ◽  
2005 ◽  
Vol 130 (2) ◽  
pp. 213-222 ◽  
Author(s):  
K A Fischer ◽  
K Van Leyen ◽  
K W Lovercamp ◽  
G Manandhar ◽  
M Sutovsky ◽  
...  

Lipoxygenases (LOXs) are a family of enzymes capable of peroxidizing phospholipids. A member of the LOX family of enzymes, 15-LOX, participates in the degradation of mitochondria and other organelles within differentiating red blood cells, the reticulocytes. The present study provides biochemical and immunocytochemical evidence for the presence of 15-LOX in the sperm cytoplasmic droplet (CD). Testicular, epididymal and ejaculated spermatozoa were evaluated for the presence of 15-LOX using an affinity-purified immune serum raised against a synthetic peptide corresponding to the C-terminal sequence of rabbit reticulocyte 15-LOX. Western blotting revealed an appropriate single band of ~81 kDa in boar spermatozoa but not in boar seminal plasma. When ejaculated boar spermatozoa were subjected to separation on a 45/90% Percoll gradient, 15-LOX co-migrated with the immotile sperm and cellular debris/CD fractions, but not with the motile sperm fraction containing morphologically normal spermatozoa without CDs. Varied levels of 15-LOX were expressed in ejaculated sperm samples from boars with varied semen quality. By immunofluorescence, prominent 15-LOX immunoreactivity was found within the residual body in the testis and within the CDs from caput, corpus and cauda epididymal and ejaculated spermatozoa. Components of the ubiquitin-dependent proteolytic pathway, which is thought to facilitate both spermiogenesis and reticulocyte organelle degradation, were also detected in the sperm CD. These included ubiquitin, the ubiquitin-conjugating enzyme E2, the ubiquitin C-terminal hydrolase PGP 9.5, and various 20S proteasomal core subunits of the α- and β-type. The 15-LOX and various components of the ubiquitin–proteasome pathway were also detected in sperm CDs of other mammalian species, including the human, mouse, stallion and wild babirusa boar. We conclude that 15-LOX is prominently present in the mammalian sperm CD and thus may contribute to spermiogenesis, CD function or CD removal.


2020 ◽  
Vol 21 (5) ◽  
pp. 1713 ◽  
Author(s):  
Owais M. Bhat ◽  
Xinxu Yuan ◽  
Sarah Camus ◽  
Fadi N. Salloum ◽  
Pin-Lan Li

Recent studies have shown that arterial medial calcification is mediated by abnormal release of exosomes/small extracellular vesicles from vascular smooth muscle cells (VSMCs) and that small extracellular vesicle (sEV) secretion from cells is associated with lysosome activity. The present study was designed to investigate whether lysosomal expression of mucolipin-1, a product of the mouse Mcoln1 gene, contributes to lysosomal positioning and sEV secretion, thereby leading to arterial medial calcification (AMC) and stiffening. In Mcoln1−/− mice, we found that a high dose of vitamin D (Vit D; 500,000 IU/kg/day) resulted in increased AMC compared to their wild-type littermates, which was accompanied by significant downregulation of SM22-α and upregulation of RUNX2 and osteopontin in the arterial media, indicating a phenotypic switch to osteogenic. It was also shown that significantly decreased co-localization of lysosome marker (Lamp-1) with lysosome coupling marker (Rab 7 and ALG-2) in the aortic wall of Mcoln1−/− mice as compared to their wild-type littermates. Besides, Mcoln1−/− mice showed significant increase in the expression of exosome/ sEV markers, CD63, and annexin-II (AnX2) in the arterial medial wall, accompanied by significantly reduced co-localization of lysosome marker (Lamp-1) with multivesicular body (MVB) marker (VPS16), suggesting a reduction of the lysosome-MVB interactions. In the plasma of Mcoln1−/− mice, the number of sEVs significantly increased as compared to the wild-type littermates. Functionally, pulse wave velocity (PWV), an arterial stiffening indicator, was found significantly increased in Mcoln1−/− mice, and Vit D treatment further enhanced such stiffening. All these data indicate that the Mcoln1 gene deletion in mice leads to abnormal lysosome positioning and increased sEV secretion, which may contribute to the arterial stiffness during the development of AMC.


1966 ◽  
Vol 31 (2) ◽  
pp. 319-347 ◽  
Author(s):  
Robert E. Smith ◽  
Marilyn G. Farquhar

The nature and content of lytic bodies and the localization of acid phosphatase (AcPase) activity were investigated in mammotrophic hormone-producing cells (MT) from rat anterior pituitary glands. MT were examined from lactating rats in which secretion of MTH1 was high and from postlactating rats in which MTH secretion was suppressed by removing the suckling young. MT from lactating animals contained abundant stacks of rough-surfaced ER, a large Golgi complex with many forming secretory granules, and a few lytic bodies, primarily multivesicular bodies and dense bodies. MT from postlactating animals, sacrificed at selected intervals up to 96 hr after separation from their suckling young, showed (a) progressive involution of the protein synthetic apparatus with sequestration of ER and ribosomes in autophagic vacuoles, and (b) incorporation of secretory granules into multivesicular and dense bodies. The content of mature granules typically was incorporated into dense bodies whereas that of immature granules found its way preferentially into multivesicular bodies. The secretory granules and cytoplasmic constituents segregated within lytic bodies were progressively degraded over a period of 24 to 72 hr to yield a common residual body, the vacuolated dense body. In MT from lactating animals, AcPase reaction product was found in lytic bodies, and in several other sites not usually considered to be lysosomal in nature, i.e., inner Golgi cisterna and associated vesicles, and around most of the immature, and some of the mature secretory granules. In MT from postlactating animals, AcPase was concentrated in lytic bodies; reaction product and incorporated secretory granules were frequently recognizable within the same multivesicular or dense body which could therefore be identified as "autolysosomes" connected with the digestion of endogenous materials. Several possible explanations for the occurrence of AcPase in nonlysosomal sites are discussed. From the findings it is concluded that, in secretory cells, lysosomes function in the regulation of the secretory process by providing a mechanism which takes care of overproduction of secretory products.


2018 ◽  
Vol 115 (19) ◽  
pp. E4396-E4405 ◽  
Author(s):  
Sebastian Bänfer ◽  
Dominik Schneider ◽  
Jenny Dewes ◽  
Maximilian T. Strauss ◽  
Sven-A. Freibert ◽  
...  

The beta-galactoside binding lectin galectin-3 (Gal3) is found intracellularly and in the extracellular space. Secretion of this lectin is mediated independently of the secretory pathway by a not yet defined nonclassical mechanism. Here, we found Gal3 in the lumen of exosomes. Superresolution and electron microscopy studies visualized Gal3 recruitment and sorting into intraluminal vesicles. Exosomal Gal3 release depends on the endosomal sorting complex required for transport I (ESCRT-I) component Tsg101 and functional Vps4a. Either Tsg101 knockdown or expression of dominant-negative Vps4aE228Q causes an intracellular Gal3 accumulation at multivesicular body formation sites. In addition, we identified a highly conserved tetrapeptide P(S/T)AP motif in the amino terminus of Gal3 that mediates a direct interaction with Tsg101. Mutation of the P(S/T)AP motif results in a loss of interaction and a dramatic decrease in exosomal Gal3 secretion. We conclude that Gal3 is a member of endogenous non-ESCRT proteins which are P(S/T)AP tagged for exosomal release.


2010 ◽  
Vol 21 (23) ◽  
pp. 4057-4060 ◽  
Author(s):  
Emily M. Coonrod ◽  
Tom H. Stevens

In 1992, Raymond et al. published a compilation of the 41 yeast vacuolar protein sorting (vps) mutant groups and described a large class of mutants (class E vps mutants) that accumulated an exaggerated prevacuolar endosome-like compartment. Further analysis revealed that this “class E compartment” contained soluble vacuolar hydrolases, vacuolar membrane proteins, and Golgi membrane proteins unable to recycle back to the Golgi complex, yet these class E vps mutants had what seemed to be normal vacuoles. The 13 class E VPS genes were later shown to encode the proteins that make up the complexes required for formation of intralumenal vesicles in late endosomal compartments called multivesicular bodies, and for the sorting of ubiquitinated cargo proteins into these internal vesicles for eventual delivery to the vacuole or lysosome.


2007 ◽  
Vol 18 (2) ◽  
pp. 697-706 ◽  
Author(s):  
Matthew W. McNatt ◽  
Ian McKittrick ◽  
Matthew West ◽  
Greg Odorizzi

The sorting of most integral membrane proteins into the lumenal vesicles of multivesicular bodies (MVBs) is dependent on the attachment of ubiquitin (Ub) to their cytosolic domains. However, Ub is not required for sorting of Sna3, an MVB vesicle cargo protein in yeast. We show that Sna3 circumvents Ub-mediated recognition by interacting directly with Rsp5, an E3 Ub ligase that catalyzes monoubiquitination of MVB vesicle cargoes. The PPAY motif in the C-terminal cytosolic domain of Sna3 binds the WW domains in Rsp5, and Sna3 is polyubiquitinated as a consequence of this association. However, Ub does not appear to be required for transport of Sna3 via the MVB pathway because its sorting occurs under conditions in which its ubiquitination is impaired. Consistent with Ub-independent function of the MVB pathway, we show by electron microscopy that the formation of MVB vesicles does not require Rsp5 E3 ligase activity. However, cells expressing a catalytically disabled form of Rsp5 have a greater frequency of smaller MVB vesicles compared with the relatively broad distribution of vesicles seen in MVBs of wild-type cells, suggesting that the formation of MVB vesicles is influenced by Rsp5-mediated ubiquitination.


2008 ◽  
Vol 180 (2) ◽  
pp. 389-402 ◽  
Author(s):  
Phyllis I. Hanson ◽  
Robyn Roth ◽  
Yuan Lin ◽  
John E. Heuser

Endosomal sorting complex required for transport III (ESCRT-III) proteins function in multivesicular body biogenesis and viral budding. They are recruited from the cytoplasm to the membrane, where they assemble into large complexes. We used “deep-etch” electron microscopy to examine polymers formed by the ESCRT-III proteins hSnf7-1 (CHMP4A) and hSnf7-2 (CHMP4B). When overexpressed, these proteins target to endosomes and the plasma membrane. Both hSnf7 proteins assemble into regular approximately 5-nm filaments that curve and self-associate to create circular arrays. Binding to a coexpressed adenosine triphosphate hydrolysis–deficient mutant of VPS4B draws these filaments together into tight circular scaffolds that bend the membrane away from the cytoplasm to form buds and tubules protruding from the cell surface. Similar buds develop in the absence of mutant VPS4B when hSnf7-1 is expressed without its regulatory C-terminal domain. We demonstrate that hSnf7 proteins form novel membrane-attached filaments that can promote or stabilize negative curvature and outward budding. We suggest that ESCRT-III polymers delineate and help generate the luminal vesicles of multivesicular bodies.


2009 ◽  
Vol 37 (1) ◽  
pp. 156-160 ◽  
Author(s):  
Suman Lata ◽  
Guy Schoehn ◽  
Julianna Solomons ◽  
Ricardo Pires ◽  
Heinrich G. Göttlinger ◽  
...  

ESCRT-III (endosomal sorting complex required for transport III) is required for the formation and abscission of intraluminal endosomal vesicles, which gives rise to multivesicular bodies, budding of some enveloped viruses and cytokinesis. ESCRT-III is composed of 11 members in humans, which, except for one, correspond to the six ESCRT-III-like proteins in yeast. At least CHMP (charged multivesicular body protein) 2A and CHMP3 assemble into helical tubular structures that provide a platform for membrane interaction and VPS (vacuolar protein sorting) 4-catalysed effects leading to disassembly of ESCRT-III CHMP2A–CHMP3 polymers in vitro. Progress towards the understanding of the structures and function of ESCRT-III, its activation, its regulation by accessory factors and its role in abscission of membrane enveloped structures in concert with VPS4 are discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Prosper Raymond ◽  
Anthony Manoni Mshandete ◽  
Amelia Kajumulo Kivaisi

The activity of oxidative and hydrolytic enzymes of the edible and medicinal white rot fungi Coprinus cinereus (Schaeff.) Gray mushroom was observed during mycelia growth and fruiting body development in solid substrate fermentation using sisal waste fractions amended with cow dung manure as supplement. Laccase had the highest titre value among the five detected enzymes. Its activity was higher during mycelia growth compared to fruiting phase, with 10% supplemented substrate formulation unmixed sisal leaf decortication residues [abbreviated SL : SB (100 : 0)] displaying the highest activity of 39.45±12.05 Ug−1. Lignin peroxidase (LiP) exhibited a characteristic wave-like pattern with the highest peaks found either during full mycelia colonization or soon after first flush harvest; the highest activity of 1.93±0.62 Ug−1 was observed on unsupplemented SL : SB (100 : 0) substrate formulation during mycelia colonization. For hydrolytic enzymes, the highest carboxymethyl cellulase (CMCase) activity of 2.03±0.70 Ug−1 was observed on 20% supplemented SL : SB (0 : 100) after first flush; that of pectinase (1.90±0.32 Ug−1) was revealed after third flush on 10% supplemented SL : SB (0 : 100) substrate formulation while 10% supplemented SL : SB (25 : 75) exhibited the highest xylanase activity (1.23±0.12 Ug−1) after first flush. These findings show that the activities of both oxidative and hydrolytic enzymes were regulated in line with developmental phase of growth of Coprinus cinereus.


Author(s):  
Xueming Tang

Multivesicular bodies were observed frequently in electron microscope photographs of Leydig cells from normal adult rat testes. Their formation, evolution and fate were analyzed morphologically in preparations treated to show cytidine monophosphatase ( CMPase ) activity and in animals sacrificed at various time intervals ranging from 5 minutes to 2 hours after a single intratesticular injection of cationic ferritin. The CMPase medium contains 2mM cerium chloride, 2mM cytidine monophosphate, 5mM manganese chloride and 40mM sodium acetate buffer ( pH 5.0 ) with 4% sucrose. Cationic ferritin was used as a tracer for demonstrating the endocytic activity of Leydig cells.Cytochemical experiments showed that, in contrast to lysosomes which were CMPase positive, the premultivesicular bodies and the pale multivesicular bodies were CMPase negative. The dense multivesicular bodies were frequently apposed to strongly reactive lysosomes and they aquire their hydrolytic enzymes by fusion with lysosomes and showed CMPase activity.


Sign in / Sign up

Export Citation Format

Share Document