Process morphology: structural dynamics in development and evolution

1992 ◽  
Vol 70 (4) ◽  
pp. 708-714 ◽  
Author(s):  
Rolf Sattler

Since structure is not completely static, but more or less changing, it appears appropriate to see it dynamically as process. More specifically, each particular structure can be conceived of as a combination of morphogenetic processes. These process combinations may change during development and evolution, during ontogeny and phylogeny. Evolutionary processes, or more specifically modes of morphological transformation, can be seen more dynamically when conceptualized as changes in process combinations. These evolutionary dynamics are illustrated by examples of the evolutionary processes of several schemes such as Zimmermann's scheme (heterochrony, heterotopy, heteromorphy), Takhtajan's scheme (prolongation, abbreviation, deviation) and other processes such as homeosis. Process morphology, which deals with the diversity of plant form in terms of process combinations (instead of structural categories such as root, stem, and leaf), provides a dynamic integration of development and evolution in terms of process combinations and their changes. In other words, the (developmental) dynamics of process combinations representing structures is seen undergoing further (evolutionary) dynamics. Hence, there are (evolutionary) dynamics of the (developmental) dynamics. Key words: plant morphogenesis, evolutionary processes, homology, heterochrony, neoteny, homeosis.

Author(s):  
Andersonn Silveira Prestes

The establishment and spread of exotic species is a contemporary major concern. Alien species may become invasive in their new habitat, leading to both/either environmental and/or economic impacts. I briefly reviewed the literature in the last decade about the relationship of exotic species and native communities. I identified that professionals usually approach the subject in two main points of view: (1) researchers tend to point out the impacts of alien species on entire communities, evaluating if the relationship is positive, negative or neutral; (2) they focus on the eco-evolutionary processes involved in the introductions, the dynamics of invasion, and individual study cases. When evaluating the response of introductions to entire communities, evidence seems to be ambiguous and may support positive, negative or neutral relationship, especially depending on the scale approached. The unique eco-evolutionary pathways of each introduction may be a great shortcoming in the searching for generalities. On the other hand, advances have been made in understanding the dynamics of invasion on different lineages through a more selective/individualized approach. I suggest that the dynamics of invasion might be studied through a perspective in which different eco-evolutionary processes, levels of organization (from gene to entire communities), the history of the organism(s) and time are taken into account. Individual cases might be compared in attempt to understand how the relationship exotic and native works and in the search for generalities.


2019 ◽  
Author(s):  
Bernardo Gutierrez ◽  
Emma Wise ◽  
Steven Pullan ◽  
Christopher Logue ◽  
Thomas A. Bowden ◽  
...  

AbstractThe Amazon basin is host to numerous arthropod-borne viral pathogens that cause febrile disease in humans. Among these,Oropouche orthobunyavirus(OROV) is a relatively understudied member of the Peribunyavirales that causes periodic outbreaks in human populations in Brazil and other South American countries. Although several studies have described the genetic diversity of the virus, the evolutionary processes that shape the viral genome remain poorly understood. Here we present a comprehensive study of the genomic dynamics of OROV that encompasses phylogenetic analysis, evolutionary rate estimates, inference of natural selective pressures, recombination and reassortment, and structural analysis of OROV variants. Our study includes all available published sequences, as well as a set of new OROV genomes sequences obtained from patients in Ecuador, representing the first set of viral genomes from this country. Our results show that differing evolutionary processes on the three segments that encompass the viral genome lead to variable evolutionary rates and TMRCAs that could be explained by cryptic reassortment. We also present the discovery of previously unobserved putative N-linked glycosylation sites, and codons which evolve under positive selection on the viral surface proteins, and discuss the potential role of these features in the evolution of the virus through a combined phylogenetic and structural approach.


2018 ◽  
Vol 148 (2) ◽  
Author(s):  
Lynn Govaert

It is well-known that ecological and evolutionary processes can occur on similar time scales resulting in eco-evolutionary dynamics. One of the main questions in eco-evolutionary dynamics involves the assessment of the relative contribution of evolution, ecology and their interaction in the eco-evolutionary change under study. This has led to the development of several methods aimed to quantify the contributions of ecology and evolution to observed trait change, here referred to as eco-evolutionary partitioning metrics. This study provides an overview on currently-used partitioning metrics with a focus on methods that can quantify evolutionary and non-evolutionary contributions to population and community trait change. I highlight key differences between these metrics found in previous studies. Additionally, I also provide a detailed comparison between the ‘Geber’ method and the reaction norm approach. Next, I provide a guideline for researchers to assess which metrics are best suited for their data, give an overview on the type of data needed for these metrics, and how this data can be collected with a focus on community data.


2015 ◽  
Vol 47 (3) ◽  
pp. 233-243 ◽  
Author(s):  
Stefan Zajączkowski ◽  
Tomasz J. Wodzicki

In the presented model cells of the plant body form a spatial medium in which three-dimensional morphogenic waves of auxin are propagated. Points in the same phase of oscillation form isophasic surfaces and the vectors of wave propagation form a three-dimensional vector field. The vectors in the case of local inhomogeneities of the medium deviate from organ polarity, providing positional information recognized by cells. Models of functioning of such a supracellular oscillatory system in regulation of tissue differentiation, tropic responses and plant form are discussed.


2020 ◽  
Author(s):  
Lars Bosshard ◽  
Stephan Peischl ◽  
Martin Ackermann ◽  
Laurent Excoffier

Abstract Background Recent experimental work has shown that the evolutionary dynamics of bacteria expanding across space can differ dramatically from what we expect under well-mixed conditions. During spatial expansion, deleterious mutations can accumulate due to inefficient selection on the expansion front, potentially interfering with and modifying adaptive evolutionary processes. Results We used whole genome sequencing to follow the genomic evolution of 10 mutator Escherichia coli lines during 39 days (∼1650 generations) of a spatial expansion, which allowed us to gain a temporal perspective on the interaction of adaptive and non-adaptive evolutionary processes during range expansions. We used elastic net regression to infer the positive or negative effects of mutations on colony growth. The colony size, measured after three day of growth, decreased at the end of the experiment in all 10 lines, and mutations accumulated at a nearly constant rate over the whole experiment. We find evidence that beneficial mutations accumulate primarily at an early stage of the experiment, leading to a non-linear change of colony size over time. Indeed, the rate of colony size expansion remains almost constant at the beginning of the experiment and then decreases after ∼12 days of evolution. We also find that beneficial mutations are enriched in genes encoding transport proteins, and genes coding for the membrane structure, whereas deleterious mutations show no enrichment for any biological process. Conclusions Our experiment shows that beneficial mutations target specific biological functions mostly involved in inter or extra membrane processes, whereas deleterious mutations are randomly distributed over the whole genome. It thus appears that the interaction between genetic drift and the availability or depletion of beneficial mutations determines the change in fitness of bacterial populations during range expansion.


2020 ◽  
Author(s):  
Alexander B. Chase ◽  
Douglas Sweeney ◽  
Mitchell N. Muskat ◽  
Dulce Guillén-Matus ◽  
Paul R. Jensen

ABSTRACTWhile specialized metabolites are thought to mediate ecological interactions, the evolutionary processes driving their distributions, particularly among closely related lineages, remain poorly understood. Here, we examine the evolutionary dynamics governing the diversity and distribution of biosynthetic gene clusters (BGCs) in 118 strains across nine described species within the marine actinomycete genus Salinispora. While previous evidence indicated that horizontal gene transfer largely contributed to BGC diversity, we find that a majority of BGCs in Salinispora genomes are maintained by processes of vertical descent. In particular, we identified species-specific signatures that were associated with both BGC distributions and the production of their encoded specialized metabolites. By analyzing nine experimentally characterized BGCs that range in conservation from species to genus specific, we find that the distribution of BGCs among Salinispora species is maintained by selection, while BGC diversification is constrained by recombination among closely related strains and strengthened by gain/loss events between species. Notably, the evolutionary processes driving BGC diversification had direct consequences for compound production, elucidating the mechanisms that lead to chemical diversification. These results support the concept that specialized metabolites, and their cognate BGCs, represent functional traits associated with ecological differentiation among Salinispora species.GRAPHICAL ABSTRACT


Paleobiology ◽  
2000 ◽  
Vol 26 (S4) ◽  
pp. 289-304
Author(s):  
Karl J. Niklas

Attempts to model form-function relationships for fossil plants rely on the facts that the physiological and structural requirements for plant growth, survival, and reproductive success are remarkably similar for the majority of extant and extinct species regardless of phyletic affiliation and that most of these requirements can be quantified by means of comparatively simple mathematical expressions drawn directly from the physical and engineering sciences. Owing in part to the advent and rapid expansion of computer technologies, the number of fossil plant form-function models has burgeoned in the last two decades and encompasses every level of biological organization ranging from molecular self-assembly to ecological and evolutionary dynamics. This recent and expansive interest in modeling fossil plant form-function relationships is discussed in the context of the general philosophy of modeling past biological systems and how the reliability of models can be examined (i.e., direct experimental manipulation or observation of the system being modeled). This philosophy is illustrated and methods of validating models are critiqued in terms of four models drawn from the author's work (the quantification of wind-induced stem bending stresses, wind pollination efficiency of early Paleozoic ovulate reproductive structures, population dynamics and species extinction in monotypic and “mixed” communities, and the adaptive radiation of early vascular land plants). The assumptions and logical (mathematical) consequences (predictions) of each model are broadly outlined, and, in each case, the model is shown to be overly simplistic despite its ability to predict the general or particular behavior or operation of the system modeled. Nonetheless, these four models, which illustrate some of pros and cons of modeling fossil form-function relationships, are argued to be pedagogically useful because, like all models, they expose the internal logical consistency of our basic assumptions about how organic form and function interrelate.


2016 ◽  
Author(s):  
Chaitanya S. Gokhale ◽  
Christoph Hauert

AbstractSocial dilemmas are an integral part of social interactions. Cooperative actions, ranging from secreting extra-cellular products in microbial populations to donating blood in humans, are costly to the actor and hence create an incentive to shirk and avoid the costs. Nevertheless, cooperation is ubiquitous in nature. Both costs and benefits often depend non-linearly on the number and types of individuals involved–as captured by idioms such as ‘too many cooks spoil the broth’ where additional contributions are discounted, or ‘two heads are better than one’ where cooperators synergistically enhance the group benefit. Interaction group sizes may depend on the size of the population and hence on ecological processes. This results in feedback mechanisms between ecological and evolutionary processes, which jointly affect and determine the evolutionary trajectory. Only recently combined eco-evolutionary processes became experimentally tractable in microbial social dilemmas. Here we analyse the evolutionary dynamics of non-linear social dilemmas in settings where the population fluctuates in size and the environment changes over time. In particular, cooperation is often supported and maintained at high densities through ecological fluctuations. Moreover, we find that the combination of the two processes routinely reveals highly complex dynamics, which suggests common occurrence in nature.


2019 ◽  
Author(s):  
Eduardo H. Colombo ◽  
Ricardo Martínez-García ◽  
Cristóbal López ◽  
Emilio Hernández-García

AbstractEco-evolutionary frameworks can explain certain features of communities in which ecological and evolutionary processes occur over comparable timescales. In the particular case of prey-predator systems, a combination of empirical and theoretical studies have explored this possibility, showing that the evolution of prey traits, predator traits or the coevolution of both can contribute to the stability of the community, as well as to the emergence of various types of population cycles. However, these studies overlook that interactions are spatially constrained, a crucial ingredient known to foster species coexistence per se. Here, we investigate whether evolutionary dynamics interacts with the spatial structure of a prey-predator community in which both species show limited mobility and predators perceptual ranges are subject to natural selection. In these conditions, our results unveil an eco-evolutionary feedback between species spatial mixing and predators perceptual range: different levels of species mixing select for different perceptual ranges, which in turn reshape the spatial distribution of preys and their interaction with predators. This emergent pattern of interspecific interactions feeds back to the efficiency of the various perceptual ranges, thus selecting for new ones. Finally, since prey-predator mixing is the key factor that regulates the intensity of predation, we explore the community-level implications of such feedback and show that it controls both coexistence times and species extinction probabilities.Author summaryEvolutionary processes occurring on temporal scales that are comparable to those of ecological change can result in reciprocal interactions between ecology and evolution termed eco-evolutionary feedbacks. Such interplay is clear in prey-predator systems, in which predation alters the distribution of resources (preys). In turn, changes in the abundance and spatial distribution of preys may lead to the evolution of new predation strategies, which may change again the properties of the prey population. Here, we investigate the interplay between limited mobility, species mixing, and finite perception in a prey-predator system. We focus on the case in which predator perceptual ranges are subject to natural selection and examine, via coexistence times and species extinction probabilities, whether the resulting eco-evolutionary dynamics mediates the stability of the community. Our results confirm the existence of such eco-evolutionary feedback and reveal its potential impact on community-level processes.


Sign in / Sign up

Export Citation Format

Share Document