Biological control of foot and root rot in pea caused by Fusarium solani with nonpathogenic Fusarium oxysporum isolates

1994 ◽  
Vol 72 (6) ◽  
pp. 843-852 ◽  
Author(s):  
P. J. Oyarzun ◽  
J. Postma ◽  
A. J. G. Luttikholt ◽  
A. E. Hoogland

Two nonpathogenic isolates of Fusarium oxysporum were examined for their ability to counteract F. solani f.sp. pisi, which causes foot and dry root rot in pea. Antagonism was studied in vitro, in a sterilized field soil, and in six natural field soils. Besides native F. solani, other typical pea root rot pathogens occurred in the natural field soils. Both nonpathogenic F. oxysporum isolates reduced disease severity and prevented the plant weight losses that occurred owing to F. solani f.sp. pisi in sterilized soil. Precolonization of sterilized soil with nonpathogenic isolates increased the antagonistic effect. Also, in highly infested field soils the addition of nonpathogenic isolates resulted in lower disease severities and higher yields. Colonization of the soil organic matter by F. oxysporum reached 100% in sterilized soil, independent of the presence of F. solani, and 40 – 90% in naturally infested soils containing native F. solani. The performance of benomyl-resistant mutants of F. oxysporum did not differ from their wild types. Key words: antagonism, soil organic matter, colonization, Pisum sativum.

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1326
Author(s):  
Calvin F. Glaspie ◽  
Eric A. L. Jones ◽  
Donald Penner ◽  
John A. Pawlak ◽  
Wesley J. Everman

Greenhouse studies were conducted to evaluate the effects of soil organic matter content and soil pH on initial and residual weed control with flumioxazin by planting selected weed species in various lab-made and field soils. Initial control was determined by planting weed seeds into various lab-made and field soils treated with flumioxazin (71 g ha−1). Seeds of Echinochloa crus-galli (barnyard grass), Setaria faberi (giant foxtail), Amaranthus retroflexus (redroot pigweed), and Abutilon theophrasti (velvetleaf) were incorporated into the top 1.3 cm of each soil at a density of 100 seeds per pot, respectively. Emerged plants were counted and removed in both treated and non-treated pots two weeks after planting and each following week for six weeks. Flumioxazin control was evaluated by calculating percent emergence of weeds in treated soils compared to the emergence of weeds in non-treated soils. Clay content was not found to affect initial flumioxazin control of any tested weed species. Control of A. theophrasti, E. crus-galli, and S. faberi was reduced as soil organic matter content increased. The control of A. retroflexus was not affected by organic matter. Soil pH below 6 reduced flumioxazin control of A. theophrasti, and S. faberi but did not affect the control of A. retroflexus and E. crus-galli. Flumioxazin residual control was determined by planting selected weed species in various lab-made and field soils 0, 2, 4, 6, and 8 weeks after treatment. Eight weeks after treatment, flumioxazin gave 0% control of A. theophrasti and S. faberi in all soils tested. Control of A. retroflexus and Chenopodium album (common lambsquarters) was 100% for the duration of the experiment, except when soil organic matter content was greater than 3% or the soil pH 7. Eight weeks after treatment, 0% control was only observed for common A. retroflexus and C. album in organic soil (soil organic matter > 80%) or when soil pH was above 7. Control of A. theophrasti and S. faberi decreased as soil organic matter content and soil pH increased. Similar results were observed when comparing lab-made soils to field soils; however, differences in control were observed between lab-made organic matter soils and field organic matter soils. Results indicate that flumioxazin can provide control ranging from 75–100% for two to six weeks on common weed species.


2014 ◽  
Vol 12 (1) ◽  
pp. 103-110 ◽  
Author(s):  
SS Siddique ◽  
MKA Bhuiyan ◽  
R Momotaz ◽  
GMM Bari ◽  
MH Rahman

An experiment was conducted at Microbiology Laboratory of Plant Pathology Department, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) during 2007 to determine the virulence and variation in symptom development by Fusarium oxysporum f. sp. phaseoli isolates at different growth stages such as emergence and early vegetative stage, branching and rapid vegetative growth stage and early flowering stage of Bush bean, and in-vitro control of the pathogen with the selected fungicides. Eight isolates of this pathogen were collected from different pathology laboratory of BARI, BAU and BSMRAU. IS3 isolate collected from Bushbean seeds were found most virulent in pathogenicity test such as pre-emergence mortality, root rot, root lesion, leaf yellowing and wilting when this isolate was inoculated at different growth stages of bush bean. Four fungicides such as Vitavax, Rovral, Cupravit and Aimcozim were evaluated invitro to test the efficacy against isolate IS3. Aimcozim at different concentration (50-400 ppm) was found most effective in in-vitro evaluation. DOI: http://dx.doi.org/10.3329/agric.v12i1.19865 The Agriculturists 2014; 12(1) 103-110


Plant Disease ◽  
2019 ◽  
Vol 103 (12) ◽  
pp. 3234-3243
Author(s):  
David R. Cruz ◽  
Leonor F. S. Leandro ◽  
Gary P. Munkvold

Fusarium oxysporum (Fo) is an important pathogen that reduces soybean yield by causing seedling disease and root rot. This study assessed the effects of pH and temperature on Fo fungal growth and seedling disease. In an in vitro assay, 14 Fo isolates collected from symptomatic soybean roots across Iowa in 2007 were grown on artificial culture media at five pH levels (4, 5, 6, 7, and 8) and incubated at four temperatures (15, 20, 25, or 30°C). In a rolled-towel assay, soybean seeds from Fo-susceptible cultivar Jack were inoculated with a suspension of a pathogenic or a nonpathogenic Fo isolate; both isolates were previously designated for their relative aggressiveness in causing root rot at 25°C. The seeds were placed in rolled germination paper, and the rolls were incubated in all combinations of buffer solutions at four pH levels (4, 5, 6, and 7), and four temperatures (15, 20, 25, or 30°C). There was a significant interaction between temperature and pH (P < 0.05) for in vitro radial growth and root rot severity. Isolates showed the most in vitro radial growth after incubation at pH 6 and 25°C. For the rolled-towel assay, the pathogenic isolate caused the most severe root rot at pH 6 and 30°C. Gaussian regression analysis estimates for optimal conditions were pH 6.3 at 27.1°C for maximal fungal growth and pH 5.9 at 30°C for maximal root rot severity. These results indicate that optimal pH and temperature conditions are similar for Fo growth and disease in soybean seedlings and suggest that Fo may be a more important seedling pathogen when soybeans are planted under warm conditions in moderately acidic soils.


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
K. Vignesh ◽  
K. Rajamohan ◽  
P. Balabaskar ◽  
R. Anandan

Tomato (Solanum lycopersicum L.) is one of the most important, commercial and widely grown vegetable crop in the world. Tomato plays a critical role in nutritional food requirements, income and employment opportunities for the people. However, its production is threatened by the Fusarium wilt caused by Fusarium oxysporum f.sp. lycopersici and production losses between 30%to40%. In the present investigation an attempt has been made to study the in vitro efficacy of Pseudomonas fluorescens against Fusarium oxysporum f.sp. lycopersici. The antagonistic effect of Pseudomonas fluorescens were observed by the Dual culture technique and Agarwell method under the in vitro conditions.Among the ten isolates of Pseudomonas fluorescens, isolate Pf5 found to show the maximum percent inhibition over control (58.75%) and least mycelial growth (37.12mm) in dual culture technique against Fusarium oxysporum f.sp. lycopersici. In Agar well method isolate Pf5 proved out the maximum inhibition zone (17.47mm)against Fusarium oxysporumf.sp. lycopersici and percent inhibition over control (80.97%) at 30% concentration level.


2015 ◽  
Vol 43 (2) ◽  
pp. 494-500 ◽  
Author(s):  
Hacer Handan ALTINOK ◽  
Oktay ERDOGAN

Fusarium oxysporum is a well-known soil-borne fungi and it is difficult to control their pathogenic strains by conventional strategies. The cultures of two strains of Trichoderma harzianum (T16 and T23) were examined in laboratory conditions and with pot experiments for the control of pathogenic strains of Fusarium oxysporum f. sp. melongenae (Fomg), Fusarium oxysporum f. sp. lycopersici (Fol), Fusarium oxysporum f. sp. niveum (Fon) and F. oxysporum f. sp. melonis (Fom). The T16 and T23 strains showed significant inhibition of mycelial growth in the pathogenic strains of F. oxysporum and the maximum inhibition were recorded when the T. harzianum strain T16 was used (72.69%). Both T. harzianum strains produced volatile and non-volatile metabolites that inhibited growth of F. oxysporum strains on PDA medium. In vitro colonization study demonstrated the root-colonizing ability of these antagonists. The interaction between T. harzianum isolates (T16 and T23) and pathogenic F. oxysporum hyphae showed no overgrowth, hyphal coiling, cell wall degradation or any hyphal penetration around any of the tested F. oxysporum hyphae. Pre-treatment of soil with T16 significantly reduced the severity of Fusarium wilt disease. The disease severity in control plants reached to 90-95% whereas those of the T16-Fomg and T16-Fol treated seedlings of eggplants were 37.74% and 47.12%, respectively, on the 21st day. In this study, while both T. harzianum isolates had a considerable antagonistic effect on the tested pathogens, T16 was found to be more successful than T23. The strong repressive effect of T. harzianum (T16) towards pathogenic Fusarium oxsporum can be applied in biological control of these pathogens.


Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582096034
Author(s):  
Rizwan Asif ◽  
Muhammad Hussnain Siddique ◽  
Shahbaz Ahmad Zakki ◽  
Muhammad Hidayat Rasool ◽  
Muhammad Waseem ◽  
...  

Cotton ( Gossypium hirsutum) wilt is one of the destructive disease caused by Fusarium oxysporum f. sp. vasinfectum and lead to 100% yield loss under favorable conditions. This study aims to estimate the potential of biological control agents Saccharothrix algeriensis NRRL B-24137 (SA) and chemical fungicides against cotton wilt pathogen under in-vitro and in-vivo conditions. The in-vitro study revealed that carbendazim showed maximum mycelia growth inhibition with a mean of 91% over control, which was further validated in glasshouse assay. In-vitro dual culture test of biocontrol agents with F. oxysporum determined that SA had a potential to inhibit mycelia growth by 68% compared to control. Further in glasshouse assay, the combination of the SA and carbendazim (10 µg/mL) showed a significant ( p < 0.05) disease control. Moreover, results demonstrated that carbendazim and SA remarkably decreased the disease development up to 83% and subsequently, significant improvement was observed in the plant growth parameters (plant length, root length, and plant weight) compared to untreated plants. Conclusively, exploration and utilization of bioagent for fungal diseases in cotton may provide a better line with maximum efficacy and with lesser adverse effects, which will pave a way toward better consequences in fungal treatments.


2014 ◽  
Vol 32 (2) ◽  
pp. 369-381 ◽  
Author(s):  
Hanna Kwaśny

The study presents quantitative and qualitative aspects of fungal colonization of the 2-year-old stump roots of the 30- and 49-year-old Scots pines, and biotic relations between fungi inhabiting the stump roots and major agent s of butt and root rot in Poland, i.e.: <i>H. annosum</i> and <i>A. ostoyae</i>. Compared to the live roots, the increase in density of fungi communities as well as the frequency of the fungi antagonistic towards <i>H. annosum</i> and <i>A. ostoyae</i>, particularly of <i>Trichoderma</i> species. in pine stump roots resulted in the increase of the suppressive effect of these communities towards both pathogens, studied in vitro. This finding may suggest a stronger resistance of pine stump roots to <i>H. annosum</i> and <i>A. ostoyae</i> what under forest conditions may be the example of natural control of both pathogens.


2006 ◽  
Vol 87 (1) ◽  
pp. 9-15
Author(s):  
Ricardo Ceballos ◽  
Graciela Palma ◽  
Fernando Perich ◽  
Fernando Pardo ◽  
Andrés Quiroz

Abstract Root rot caused by Fusarium oxysporum is a disease that reduces red clover persistence. Agronomical management of red clover includes MCPA application, and there is no information regarding the effects of this herbicide on the disease. MCPA was evaluated for its effects on F. oxysporum root rot and red clover (Trifolium pratense) growth in a greenhouse experiment. Additionally, in vitro mycelial growth and conidial germination of F. oxysporum were studied. For shoot dry weight and crown diameter of seedlings, the interaction of herbicide and inoculum was significant at 30 d. The herbicide–inoculum treatment reduced shoot dry weight by 20% at 1X rate and by 24% at 2X rate, and crown diameter was reduced by 10% at the high rate. The MCPA treatment caused a 40% reduction of root dry weight by the end of the experiment. Application of MCPA caused fusarium root rot to increase in severity on red clover seedlings and caused phytotoxicity at the high rate. Interaction with the other growth parameters was not significant, indicating that the effects of herbicide and inoculum were independent. Conidial germination and mycelial growth in vitro were reduced by MCPA. Results suggest that red clover growth could be negatively affected by F. oxysporum after MCPA application and that root rot severity increases at high rates of MCPA.


1997 ◽  
Vol 75 (3) ◽  
pp. 383-393 ◽  
Author(s):  
Wim J. Blok ◽  
Gerrit J. Bollen

The host range of Fusarium oxysporum f.sp. asparagi (Foa) was studied in inoculation experiments with 21 plant species. Typical root rot symptoms were incited only in asparagus, in all experiments; lupin and pea were susceptible under in vitro conditions but showed only mild symptoms occasionally when tested in soil; none of the other species showed external disease symptoms. Root colonization by Foa was studied for 14 plant species. The pathogen was detected in externally disinfested roots of all species except leek and onion, with asparagus the most extensively colonized species. Asparagus was not susceptible to isolates of F. oxysporum f.sp. pisi, lupini, cepae, lilii, and gladioli and Fusarium sacchari var. elongatum. Naturally infested field soil was planted twice for 11 – 13 weeks with 11 plant species, including asparagus and several symptomless hosts, and subsequently with asparagus as a biotest plant. Of these crops, only asparagus greatly increased the severity of Foa root rot. It was concluded that Foa has a narrow host range as a pathogen but a broad host range as a parasite. The consequences of the latter for the epidemiology of Foa are discussed. Twenty-four Foa isolates were assigned to 18 different vegetative compatibility groups (VCGs); three additional F. oxysporum isolates, which were not pathogenic on asparagus, each belonged to a unique VCG. These findings indicate that the Dutch Foa population is very diverse genetically, as was found previously for the Foa population in the United States. Key words: asparagus, Fusarium oxysporum f.sp. asparagi, host range, lupin, pea, symptomless hosts, vegetative compatibility.


Sign in / Sign up

Export Citation Format

Share Document