Development of propolis nanoparticles for the treatment of bovine mastitis: in vitro studies on antimicrobial and cytotoxic activities

2019 ◽  
Vol 99 (4) ◽  
pp. 713-723 ◽  
Author(s):  
Gabriela Tasso Pinheiro Machado ◽  
Maria Beatriz Veleirinho ◽  
Letícia Mazzarino ◽  
Luiz Carlos Pinheiro Machado Filho ◽  
Marcelo Maraschin ◽  
...  

This study describes the development of propolis nanoparticles (PNP) to treat bovine mastitis. Three PNP prepared with varying concentrations of propolis (5% and 7%, w/v) and the surfactants [poloxamer (1%, 3%, and 4%, w/v) and soy lecithin (0.25%, 0.7%, and 1%, w/v)]. PNP were characterized according to their size, polydispersity, zeta potential, pH, morphology, and physical stability. PNP were evaluated for their in vitro antimicrobial and cytotoxic effects. PNP obtained were spherical with a monodisperse distribution (polydispersity index < 0.2) and an average particle size between 181 and 201 nm. Stability studies showed that PNP were stable over 150 d. The encapsulation efficiency of total phenolic content varied between 73% and 91%. The chromatographic profile of phenolic compounds from PNP showed selective encapsulation efficiency according to the polarity of compounds. All PNP showed antimicrobial activity against Staphylococcus aureus with a minimum inhibitory concentration ranging from 156 to 310 μg mL−1. The IC50 (the concentration responsible for reduction of cellular viability by half) for epithelial cells of bovine mammary gland (MAC-T, mammary alveolar cell-T) varied from 122.2 to 268.4 μg mL−1. Results showed that PNP represent a promising nanocarrier for high concentrations of propolis extract in a stable aqueous medium, while, at the same time, presenting antimicrobial activity accompanied by moderate cytotoxicity to the MAC-T cells.

Author(s):  
Sumit Kumar ◽  
Dinesh Chandra Bhatt

Fabrication and evaluation of the Isoniazid loaded sodium alginate nanoparticles (NPs) was main objective of current investigation. These NPs were engineered using ionotropic gelation technique. The NPs fabricated, were evaluated for average particle size, encapsulation efficiency, drug loading, and FTIR spectroscopy along with in vitro drug release. The particle size, drug loading and encapsulation efficiency of fabricated nanoparticles were ranging from 230.7 to 532.1 nm, 5.88% to 11.37% and 30.29% to 59.70% respectively. Amongst all batches studied formulation F-8 showed the best sustained release of drug at the end of 24 hours.


2013 ◽  
Vol 684 ◽  
pp. 57-62 ◽  
Author(s):  
Zhi Hua Xing

Folic acid-chitosan (FA-CTS) and 10-hydroxycamptothecin (HCPT)-loaded folate-conjugated chitosan (FA-CTS/HCPT) microspheres were prepared by the ionic crosslinking method.The morphological characteristics of microspheres were examined using a scanning electron microscope (SEM). The average particle size and size distribution were determined by dynamic light scattering. The drug encapsulation efficiency (EE) , loading capacity (LC)and release characteristics in vitro were determined using ultraviolet spectrophotometer.The results shown that the microspheres are uniform spherical and regular with a size between 19.79 and81.40μm.Optimized preparation parameters lead to the successful preparation of hydroxycamptothecin-loaded folate-conjugated chitosan microspheres characterized with encapsulation efficiency and loading capacity up to (86.8±0.1)% and 20.6±0.3 % respectively. More then 90% of 10-hydroxycamptothecin was released from microspheres in 4 h at artificial gastric juice, 8h at artificial small intestinal fluid with a good delayed release effect.


2019 ◽  
Author(s):  
Elizebeth Purr ◽  
Jacob Marshall ◽  
John Smith

AbstractIn this report, we provided a novel platform to prepare fluorescent probe coumarin-6 nanoparticles by using biodegradable material polylactic acid-glycolic acid copolymer (PLGA) as material. The coumarin-6-PLGA nanoparticles were prepared by double emulsion and solvent evaporation. The encapsulation efficiency and releasing kinetics were also investigated. Results indicate that the encapsulation efficiency of coumarin-6 nanoparticles was 51.6%, the utilization rate was 81.9%, the average particle size was 135 nm, and the leakage rate of coumarin-6 in vitro was lower than 72 h. 2%. Our experimental results provide evidence that PLGA nanoparticles can effectively encapsulate fluorescent probe Coumarin-6 and release the probe in a controlled manner.


2019 ◽  
Author(s):  
Anil Shumroni ◽  
David Gupta

AbstractThis report demonstrates a novel strategy to prepare fluorouracil polylactide glycolide-polyethylene glycol monomethyl ether (PLGA-mPEG) nanoparticles and study their in vitro release characteristics. Fluorouracil PLGA-mPEG nanoparticles were prepared by nanoprecipitation method. The encapsulation efficiency was determined by high performance liquid chromatography. Based on the single factor experiment, the prescription and preparation process were optimized by orthogonal experiments. The in vitro release characteristics of nanoparticles were studied by dynamic membrane dialysis. Results The prepared nanoparticles were relatively uniform spheroidal particles with an average particle size of about 124. 3 nm, a Zeta potential of - 20. 6 mV, and an average encapsulation efficiency of (44.72 ± 0.38%). In vitro drug release experiments showed that the particle burst release was less than 30% at 2 h, and the drug was slowly released within 48 h after burst release.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huiling Song ◽  
Yu Yin ◽  
Jiahui Peng ◽  
Zixiu Du ◽  
Wei Bao

In order to achieve sustained and controlled release of the hydrophobic cargoes, improve the bioavailability, and reduce the side effects of antibiotics, the model drug erythromycin (EM) was used to prepare polycaprolactone-polyethylene glycol (PCL-PEG)/EM micelles. PCL-PEG, a biocompatible and biodegradable amphiphilic polymer, was used as carrier material of micelles to optimize the formulation and preparation process by orthogonal design. The morphology, stability, drug loading, and encapsulation efficiency and the in vitro release behavior of the micelles were investigated. In addition, activity assays of anti-Staphylococcus aureus were performed. The results indicated that PCL-PEG/EM were rod-like micelles with an average particle size of 220 ± 2.6  nm and a zeta potential of +19 mV. The average drug loading and encapsulation efficiency were approximately 6.5% and 97.0%, respectively. The micelles were stable in the serum within three days. At the effective concentration of the drug, the formulation indicated no apparent toxicity to the cells. The micelles were able to rapidly enter Staphylococcus aureus (S. aureus) and to provide sustained release cargoes that effectively inhibited S. aureus proliferation. The present study provided a new platform for the rational and effective use of hydrophobic antibiotics to treat infections.


2021 ◽  
Author(s):  
Yan Chu ◽  
Shuo Chai ◽  
Hong Pan ◽  
Jiayi Qian ◽  
Cuiyan Han ◽  
...  

Abstract In this study, we prepared and evaluated folic acid-conjugated albumin-paclitaxel (FA-BSA-PTX) nanoparticles using a new green technique, called the high-pressure homogenisation coagulation method (HPHCM). The effect of process parameters such as BSA concentration, coagulant concentration, homogenisation time, homogenisation pressure, water/ethanol ratio, and BSA/PTX ratio was analysed to optimise nanoparticle size, albumin conversion rate, and encapsulation efficiency. BSA concentration was found to exert a great influence on albumin conversion rate and particle size. Meanwhile, the BSA/PTX ratio significantly affected the nanoparticle encapsulation efficiency. Electron microscopy showed that the freeze-dried particles mostly existed in the form of dimers and trimers with an average particle size of 300–400 nm. Infrared spectroscopy indicated that PTX was well encapsulated in BSA. Raman spectra of the synthesised nanoparticles indicated changes in the disulphide bond configuration and protein structure. In vitro drug-release analysis showed that crosslinked nanoparticles exhibited a sustained release. Furthermore, in vitro cell-uptake studies on HeLa cells showed that FA can be used as a targeting ligand for albumin carriers to enhance the active targeting effect of the nanoparticles with a high FR expression. These results suggest that HPHCM is an effective method to prepare FA-BSA-PTX drug-delivery systems.


2019 ◽  
Vol 70 (7) ◽  
pp. 2519-2523
Author(s):  
Denisa Batir Marin ◽  
Oana Cioanca ◽  
Mihai Apostu ◽  
Cristina Gabriela Tuchilus ◽  
Cornelia Mircea ◽  
...  

The objective of the current study is represented by the determination of silica and a phytochemical screening of phenolic derivates of some Equisetum species. The antioxidant and antimicrobial activity for Equisetum pratense Ehrh.,, Equisetum sylvaticum L. and Equisetum telmateia Ehrh. (sin. Equisetum maximum Lam.) were also investigated. The concentration of silicon (Si) in plants was determined by the spectrophotometric method using previous treatment with NaOH 50% both for the stem and the nodal branches [1]. Results obtained varied from 95.12 to 162.10 SiO2 mg/g dry plant which represents 4.44% to 7.58% Si/100g dry sample. Two types of total extracts were obtained using different solvents and were subjected to qualitative and quantitative chemical analysis considering total phenolic content [2]. The highest concentration of investigated compounds was found in the methanolic extract, E. sylvaticum, 196.5mg/g dry sample. Antioxidant activity was monitored spectrophotometrically and expressed in terms of IC50 (�g/mL) [3]. Values gathered ranged from 261.7 to 429.5 �g/mL. The highest capacity to neutralized DPPH radicals was found in E. sylvaticum. In vitro antimicrobial activity was determined using difusimetric method [4]. Testing was performed on four microorganisms: three strains of bacteria and one species of fungi. Different effects were noticed against the bacteria, furthermore the methanol extract appeared to be most efficient. All extracts showed significand antimicrobial activity against Staphylococcus aureus (ATCC 25923) and Candida albicans (ATCC 90028) and weak to no activity against Pseudomonas aeruginosa (ATCC 27853) and Escherichia coli (ATCC 25922).


Author(s):  
Kumar Nishchaya ◽  
Swatantra K.S. Kushwaha ◽  
Awani Kumar Rai

Background: Present malignant cancer medicines has the advancement of magnetic nanoparticles as delivery carriers to magnetically accumulate anticancer medication in malignant growth tissue. Aim: In the present investigation, a silica nanoparticles (MSNs) stacked with hydroxyurea were combined and was optimized for dependent and independent variables. Method: In this study, microporous silica nanoparticle stacked with neoplastic medication had been prepared through emulsification followed with solvent evaporation method. Prepared MSNs were optimized for dependent and independent variables. Different formulations were prepared with varying ratio of polymer, lipid and surfactant which affects drug release and kinetics of drug release pattern. The obtained MSNs were identified by FTIR, SEM, drug entrapment, in-vitro drug release, drug release kinetics study, stability testing in order to investigate the nanoparticle characteristics. Results: The percentage drug entrapment of the drug for the formulations F1, F2, F3, was found to be 27.78%, 65.52% and 48.26%. The average particle size for F2 formulation was found to be 520 nm through SEM. The cumulative drug release for the formulations F1, F2, F3 was found to be 64.17%, 71.82% and 32.68%. The formulations were found to be stable which gives controlled drug delivery for 6 hours. Conclusion: From the stability studies data it can be culminated that formulations are most stable when stored at lower temperature or in refrigerator i.e. 5˚C ± 3˚C. It can be concluded that MSN’s loaded with hydroxyurea is a promising approach towards the management of cancer due to its sustained release and less side effects.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 808
Author(s):  
Ahmed Al Saqr ◽  
El-Sayed Khafagy ◽  
Ahmed Alalaiwe ◽  
Mohammed F. Aldawsari ◽  
Saad M. Alshahrani ◽  
...  

Green synthesis of gold nanoparticles (GNPs) with plant extracts has gained considerable interest in the field of biomedicine. Recently, the bioreduction nature of herbal extracts has helped to synthesize spherical GNPs of different potential from gold salt. In this study, a fast ecofriendly method was adopted for the synthesis of GNPs using fresh peel (aqueous) extracts of Benincasa hispida, which acted as reducing and stabilizing agents. The biosynthesized GNPs were characterized by UV–VIS and Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering. In addition, the in vitro antibacterial and anticancer activities of synthesized GNPs were investigated. The formation of gold nanoparticles was confirmed by the existence of a sharp absorption peak at 520 nm, corresponding to the surface plasmon resonance (SPR) band of the GNPs. TEM analysis revealed that the prepared GNPs were spherical in shape and had an average particle size of 22.18 ± 2 nm. Most importantly, the synthesized GNPs exhibited considerable antibacterial activity against different Gram-positive and Gram-negative bacteria. Furthermore, the biosynthesized GNPs exerted remarkable in vitro cytotoxicity against human cervical cancer cell line, while sparing normal human primary osteoblast cells. Such cytotoxic effect was attributed to the increased production of reactive oxygen species (ROS) that contributed to the damage of HeLa cells. Collectively, peel extracts of B. hispida can be efficiently used for the synthesis of GNPs, which can be adopted as a natural source of antimicrobial and anticancer agent.


2019 ◽  
Vol 829 ◽  
pp. 263-269
Author(s):  
Denny Nurdin ◽  
Andri Hardiansyah ◽  
Elsy Rahimi Chaldun ◽  
Anti Khoerul Fikkriyah ◽  
Hendra Dian Adhita Dharsono ◽  
...  

Exploration of natural compound for the treatment of dental-related problems are gaining of interest for enhancing therapeutic efficacy of the drugs delivery system. In this study, we have prepared terpenoid, which have been isolated from Myrmecodia pendens Merr & Perry from Papua Island, Indonesia, to be encapsulated in Polylactic-co-glycolic acid (PLGA), as the most widely used biodegradable polymer for biomedical applications, through one step single-emulsion method followed by subsequent coating by poly (vinyl alcohol) (PVA). The resultant of terpenoid-loaded PLGA microparticles were characterized systematically through scanning electron microscope and Fourier-transform infrared spectroscopy. In vitro drug release test was evaluated through dialysis method. Antibacterial test was conducted against Enterococcus faecalis as a model for persistent bacteria that causes root canal infections. The results showed that terpenoid-loaded PLGA microparticles were developed in spherical morphology with an average particle size of around 1-2μm. Terpenoid released from PLGA compartment at pH 6.5 and temperature of 37°C through a controlled-release profile mechanism with enhanced prolonged release. The bacterial assay result showed that terpenoid-loaded PLGA microparticles could reduce Enterococcus faecalis, effectively. Eventually, these result show that terpenoid-loaded PLGA microparticles as unique natural product-based extract could be developed as a potential naturally-based drug for dental-related diseases applications.


Sign in / Sign up

Export Citation Format

Share Document