scholarly journals What can PIWI-interacting RNA research learn from chickens, and vice versa?

2019 ◽  
Vol 99 (4) ◽  
pp. 641-648
Author(s):  
Xin Zhiguo Li

P-element induced wimpy testis (PIWI) interacting RNA (piRNA) are essential for fertility, by protecting the integrity of the germ-line genome via silencing of transposable elements (TE). Because new TE are constantly invading the host genome, piRNA-producing loci are under continuous pressure to undergo rapid evolution. This arms race between TE and piRNA is a prime example of the genome being more plastic than previously thought. Historically, the study of piRNA and TE has benefited from the use of diverse model organisms, including worms, fruit fly, zebrafish, frogs, and mice. In domestic chickens, we recently identified a new mode of piRNA acquisition in which the host hijacks and converts a pre-existing provirus into a piRNA-producing locus to defend against Avian leukosis virus, an adaptive immune strategy similar to the prokaryotic CRISPR–Cas [clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas)] system. This finding reveals a previously unrecognized mechanism of the host piRNA repertoire to rapidly evolve and target TE specifically. In this review, we will focus on both the unique and common features of chicken piRNA, as well as the advantages of using chickens as a model system, to address fundamental questions regarding piRNA acquisition in hosts. We will also comment on the potential application of piRNA for improving poultry health and reproductive efficiency.

2019 ◽  
Vol 127 (2) ◽  
pp. 482-490 ◽  
Author(s):  
Louis P. Watanabe ◽  
Nicole C. Riddle

Because of the growing rates of obesity in much of the world, exercise as a treatment option for obesity and as part of a healthy lifestyle is of great interest to the general public, health policy makers, and scientists alike. Despite the long history of exercise promotion and exercise research, there are still significant gaps in our understanding of how exercise impacts individuals and what role genetics plays in determining an individual’s response to exercise. Model organisms are positioned uniquely to help address these questions because of the challenges associated with carrying out large-scale, well-controlled studies in humans. The fruit fly model system, Drosophila melanogaster, has joined the models used for exercise research only recently but already has made significant contributions to the field. In this review, we highlight the opportunities for exercise research in Drosophila. We review the resources available to researchers interested in using Drosophila for exercise research, focusing on the existing systems to induce exercise in Drosophila, to measure the amount of exercise performed, and to assess physical fitness. We illustrate the potential of the Drosophila system by drawing attention to pioneering studies in Drosophila exercise research and emphasize the unique opportunities this model system represents.


2021 ◽  
Author(s):  
Yuji Matsuoka ◽  
Taro Nakamura ◽  
Takahito Watanabe ◽  
Austen A. Barnett ◽  
Sumihare Noji ◽  
...  

Studies of traditional model organisms like the fruit fly Drosophila melanogaster have contributed immensely to our understanding of the genetic basis of developmental processes. However, the generalizability of these findings cannot be confirmed without functional genetic analyses in additional organisms. Direct genome editing using targeted nucleases has the potential to transform hitherto poorly-understood organisms into viable laboratory organisms for functional genetic study. To this end, here we present a method to induce targeted genome knock-out and knock-in of desired sequences in an insect that serves as an informative contrast to Drosophila, the cricket Gryllus bimaculatus. The efficiency of germ line transmission of induced mutations is comparable to that reported for other well-studied laboratory organisms, and knock-ins targeting introns yields viable, fertile animals in which knock-in events are directly detectable by visualization of a fluorescent marker in the expression pattern of the targeted gene. Combined with the recently assembled and annotated genome of this cricket, this knock-in/knock-out method increases the viability of G. bimaculatus as a tractable system for functional genetics in a basally branching insect.


Open Biology ◽  
2012 ◽  
Vol 2 (5) ◽  
pp. 120075 ◽  
Author(s):  
Ilias Kounatidis ◽  
Petros Ligoxygakis

Summary Innate immunity relies entirely upon germ-line encoded receptors, signalling components and effector molecules for the recognition and elimination of invading pathogens. The fruit fly Drosophila melanogaster with its powerful collection of genetic and genomic tools has been the model of choice to develop ideas about innate immunity and host–pathogen interactions. Here, we review current research in the field, encompassing all layers of defence from the role of the microbiota to systemic immune activation, and attempt to speculate on future directions and open questions.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 749-760 ◽  
Author(s):  
Armin Schmidt ◽  
Gioacchino Palumbo ◽  
Maria P Bozzetti ◽  
Patrizia Tritto ◽  
Sergio Pimpinelli ◽  
...  

Abstract The sting mutation, caused by a P element inserted into polytene region 32D, was isolated by a screen for male sterile insertions in Drosophila melanogaster. This sterility is correlated with the presence of crystals in spermatocytes and spermatids that are structurally indistinguishable from those produced in males carrying a deficiency of the Y-linked crystal (cry) locus. In addition, their morphology is needle-like in Ste+ flies and star-shaped in Ste flies, once again as observed in cry– males. The sti mutation leads to meiotic drive of the sex chromosomes, and the strength of the phenomenon is correlated with the copy number of the repetitive Ste locus. The same correlation is also true for the penetrance of the male sterile mutation. A presumptive sti null allele results in male sterility and lethal maternal effect. The gene was cloned and shown to code for a putative protein that is 866 amino acids long. A C-terminal domain of 82 amino acids is identified that is well conserved in proteins from different organisms. The gene is expressed only in the germline of both sexes. The interaction of sting with the Ste locus can also be demonstrated at the molecular level. While an unprocessed 8-kb Ste primary transcript is expressed in wild-type males, in X/Y homozygous sti males, as in X/Y cry– males, a 0.7-kb mRNA is produced.


2021 ◽  
Vol 22 (S6) ◽  
Author(s):  
Yasmine Mansour ◽  
Annie Chateau ◽  
Anna-Sophie Fiston-Lavier

Abstract Background Meiotic recombination is a vital biological process playing an essential role in genome's structural and functional dynamics. Genomes exhibit highly various recombination profiles along chromosomes associated with several chromatin states. However, eu-heterochromatin boundaries are not available nor easily provided for non-model organisms, especially for newly sequenced ones. Hence, we miss accurate local recombination rates necessary to address evolutionary questions. Results Here, we propose an automated computational tool, based on the Marey maps method, allowing to identify heterochromatin boundaries along chromosomes and estimating local recombination rates. Our method, called BREC (heterochromatin Boundaries and RECombination rate estimates) is non-genome-specific, running even on non-model genomes as long as genetic and physical maps are available. BREC is based on pure statistics and is data-driven, implying that good input data quality remains a strong requirement. Therefore, a data pre-processing module (data quality control and cleaning) is provided. Experiments show that BREC handles different markers' density and distribution issues. Conclusions BREC's heterochromatin boundaries have been validated with cytological equivalents experimentally generated on the fruit fly Drosophila melanogaster genome, for which BREC returns congruent corresponding values. Also, BREC's recombination rates have been compared with previously reported estimates. Based on the promising results, we believe our tool has the potential to help bring data science into the service of genome biology and evolution. We introduce BREC within an R-package and a Shiny web-based user-friendly application yielding a fast, easy-to-use, and broadly accessible resource. The BREC R-package is available at the GitHub repository https://github.com/GenomeStructureOrganization.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Claudia P. Spampinato ◽  
Diego F. Gomez-Casati

Different model organisms, such asEscherichia coli,Saccharomyces cerevisiae,Caenorhabditis elegans,Drosophila melanogaster, mouse, cultured human cell lines, among others, were used to study the mechanisms of several human diseases. Since human genes and proteins have been structurally and functionally conserved in plant organisms, the use of plants, especiallyArabidopsis thaliana, as a model system to relate molecular defects to clinical disorders has recently increased. Here, we briefly review our current knowledge of human diseases of nuclear and mitochondrial origin and summarize the experimental findings of plant homologs implicated in each process.


1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Patrick M. Ferree ◽  
Satyaki Prasad

Satellites are one of the most enigmatic parts of the eukaryotic genome. These highly repetitive, noncoding sequences make up as much as half or more of the genomic content and are known to play essential roles in chromosome segregation during meiosis and mitosis, yet they evolve rapidly between closely related species. Research over the last several decades has revealed that satellite divergence can serve as a formidable reproductive barrier between sibling species. Here we highlight several key studies on Drosophila and other model organisms demonstrating deleterious effects of satellites and their rapid evolution on the structure and function of chromosomes in interspecies hybrids. These studies demonstrate that satellites can impact chromosomes at a number of different developmental stages and through distinct cellular mechanisms, including heterochromatin formation. These findings have important implications for how loci that cause postzygotic reproductive isolation are viewed.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Shujing Li ◽  
Luoying Zhang

Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document