scholarly journals Systematic exploration of the pH dependence of a peptide hydrogel

2019 ◽  
Vol 97 (6) ◽  
pp. 430-434 ◽  
Author(s):  
Natashya Falcone ◽  
Tsuimy Shao ◽  
Xiaoyi Sun ◽  
Heinz-Bernhard Kraatz

Stimuli-responsive peptide gels are a growing class of functional biomaterials that are involved in many applications in research. Here, we present a novel di-peptide hydrogel from the compound Boc–Phe–Trp–OH in various buffer and pH conditions. We examine the effects of different stimuli, including temperature and pH, on the mechanical strength of the gels through frequency rheology studies. We found that this hydrogelator is highly pH dependent, only forming a gel in a narrow range of pH 6–7. This hydrogelator hold promise for the development of new stimuli-responsive biomaterials for specific applications that require this type of specific stimuli.

2010 ◽  
Vol 66 (3) ◽  
pp. 258-267 ◽  
Author(s):  
Takao Kuwada ◽  
Tomokazu Hasegawa ◽  
Takashi Takagi ◽  
Isamu Sato ◽  
Fumio Shishikura

Haemoglobin component V (Hb V) from the midge larvaPropsilocerus akamusiexhibits oxygen affinity despite the replacement of HisE7 and a pH-dependence of its functional properties. In order to understand the contribution of the distal residue to the ligand-binding properties and the pH-dependent structural changes in this insect Hb, the crystal structure of Hb V was determined under five different pH conditions. Structural comparisons of these Hb structures indicated that at neutral pH ArgE10 contributes to the stabilization of the haem-bound ligand molecule as a functional substitute for the nonpolar E7 residue. However, ArgE10 does not contribute to stabilization at acidic and alkaline pH because of the swinging movement of the Arg side chain under these conditions. This pH-dependent behaviour of Arg results in significant differences in the hydrogen-bond network on the distal side of the haem in the Hb V structures at different pH values. Furthermore, the change in pH results in a partial movement of the F helix, considering that coupled movements of ArgE10 and the F helix determine the haem location at each pH. These results suggested that Hb V retains its functional properties by adapting to the structural changes caused by amino-acid replacements.


2019 ◽  
Author(s):  
Adrian Roitberg ◽  
Pancham Lal Gupta

<div>Human Glycinamide ribonucleotide transformylase (GAR Tfase), a regulatory enzyme in the de novo purine biosynthesis pathway, has been established as an anti-cancer target. GAR Tfase catalyzes the formyl transfer reaction from the folate cofactor to the GAR ligand. In the present work, we study E. coli GAR Tfase, which has high sequence similarity with the human GAR Tfase with most functional residues conserved. E. coli GAR Tfase exhibits structural changes and the binding of ligands that varies with pH which leads to change the rate of the formyl transfer reaction in a pH-dependent manner. Thus, the inclusion of pH becomes essential for the study of its catalytic mechanism. Experimentally, the pH-dependence of the kinetic parameter kcat is measured to evaluate the pH-range of enzymatic activity. However, insufficient information about residues governing the pH-effects on the catalytic activity leads to ambiguous assignments of the general acid and base catalysts and consequently its catalytic mechanism. In the present work, we use pH-replica exchange molecular dynamics (pH-REMD) simulations to study the effects of pH on E. coli GAR Tfase enzyme. We identify the titratable residues governing the pH-dependent conformational changes in the system. Furthermore, we filter out the protonation states which are essential in maintaining the structural integrity, keeping the ligands bound and assisting the catalysis. We reproduce the experimental pH-activity curve by computing the population of key protonation states. Moreover, we provide a detailed description of residues governing the acidic and basic limbs of the pH-activity curve.</div>


2021 ◽  
Vol 18 ◽  
Author(s):  
Aykut Elmas ◽  
Guliz Akyuz ◽  
Ayhan Bergal ◽  
Muberra Andac ◽  
Omer Andac

Background: pH sensitive dendrimers attached to nanocarriers, as one of the drug release systems, has become quite popular due to their ease of manufacture in experimental conditions and ability to generate fast drug release in the targeted area. This kind of fast release behavior cannot be represented properly most of the existing kinetic mathematical models. Besides, these models have either no pH dependence or pH dependence added separately. So, they have remained one dimensional. Objective: The aim of this study was to establish the proper analytic equation to describe the fast release of drugs from pH sensitive nanocarrier systems. Then, to combine it with the pH dependent equation for establishing a two-dimensional model for whole system. Methods: We used four common kinetic models for comparison and we fitted them to the release data. Finding that, only Higuchi and Korsmeyer-Peppas models show acceptable fit results. None of these models have pH dependence. To get a better description for pH triggered fast release, we observed the behavior of the slope angle of the release curve. Then we puroposed a new analytic equation by using relation between the slope angle and time. Result: To add a pH dependent equation, we assumed the drug release is “on” or “off” above/below specific pH value and we modified a step function to get a desired behavior. Conclusion: Our new analytic model shows good fitting, not only one-dimensional time dependent release, but also two-dimensional pH dependent release, that provides a useful analytic model to represent release profiles of pH sensitive fast drug release systems.


RSC Advances ◽  
2015 ◽  
Vol 5 (108) ◽  
pp. 89083-89091 ◽  
Author(s):  
Huijuan Zhang ◽  
Xianjuan Pang ◽  
Yuan Qi

A pH-sensitive and mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite semi-IPN hydrogel was designed and prepared. The composite semi-IPN hydrogel showed superior mechanical strength and pH-dependent swelling behavior.


RSC Advances ◽  
2015 ◽  
Vol 5 (76) ◽  
pp. 62091-62100 ◽  
Author(s):  
Jinjin Cheng ◽  
Guorong Shan ◽  
Pengju Pan

Poly(N-isopropylacrylamide-co-acrylamide-co-maleic acid) (PNIPAM-AM-MA) hydrogel, which can make the Cu2+ adsorption process stimuli-responsive under temperature and pH value control, has been synthesized by free radical polymerization.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4514 ◽  
Author(s):  
Nour Doumani ◽  
Elias Bou-Maroun ◽  
Jacqueline Maalouly ◽  
Maya Tueni ◽  
Adrien Dubois ◽  
...  

For efficiently measuring copper (II) ions in the acidic media of white wine, a new chemosensor based on rhodamine B coupled to a tetraazamacrocyclic ring (13aneN4CH2NH2) was designed and synthesized by a one-pot reaction using ethanol as a green solvent. The obtained chemosensor was characterized via NMR, UV and fluorescent spectra. It was marked with no color emission under neutral pH conditions, with a pink color emission under acidic conditions, and a magenta color emission under acidic conditions where copper (II) ions were present. The sensitivity towards copper (II) ions was tested and verified over Ca2+, Ag+, Zn2+, Mg2+, Co2+, Ni2+, Fe2+, Pb2+, Cd2+, Fe3+, and Mn2+, with a detection limit of 4.38 × 10−8 M in the fluorescence spectrum.


1997 ◽  
Vol 186 (7) ◽  
pp. 1159-1163 ◽  
Author(s):  
Kathryn E. Beauregard ◽  
Kyung-Dall Lee ◽  
R. John Collier ◽  
Joel A. Swanson

The pore-forming toxin listeriolysin O (LLO) is a major virulence factor implicated in escape of Listeria monocytogenes from phagocytic vacuoles. Here we describe the pH-dependence of vacuolar perforation by LLO, using the membrane-impermeant fluorophore 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) to monitor the pH and integrity of vacuoles in mouse bone marrow–derived macrophages. Perforation was observed when acidic vacuoles containing wild-type L. monocytogenes displayed sudden increases in pH and release of HPTS into the cytosol. These changes were not seen with LLO-deficient mutants. Perforation occurred at acidic vacuolar pH (4.9–6.7) and was reduced in frequency or prevented completely when macrophages were treated with the lysosomotropic agents ammonium chloride or bafilomycin A1. We conclude that acidic pH facilitates LLO activity in vivo.


2002 ◽  
Vol 361 (3) ◽  
pp. 547-556 ◽  
Author(s):  
Yoichi MATSUNAGA ◽  
Nobuhiro SAITO ◽  
Akihiro FUJII ◽  
Junichi YOKOTANI ◽  
Tadakazu TAKAKURA ◽  
...  

In the present study we identified the epitopes of antibodies against amyloid β-(1–42)-peptide (Aβ1–42): 4G8 reacted with peptides corresponding to residues 17–21, 6F/3D reacted with peptides corresponding to residues 9–14, and anti 5-10 reacted with peptides corresponding to residues 5–10. The study also yielded some insight into the Aβ1–42 structures resulting from differences in pH. An ELISA study using monoclonal antibodies showed that pH-dependent conformational changes occur in the 6F/3D and 4G8 epitopes modified at pH 4.6, but not in the sequences recognized by anti 1-7 and anti 5-10. This was unique to Aβ1–40 and Aβ1–42 and did not occur with Aβ1–16 or Aβ17–42. The reactivity profile of 4G8 was not affected by blockage of histidine residues of pH-modified Aβ1–40 and Aβ1–42 with diethyl pyrocarbonate; however, the mutant [Gln11]Aβ1–40 abrogated the unique pH-dependence towards 4G8 observed with Aβ1–40. These findings suggest that these epitopes are cryptic at pH4.6, and that Glu11 is responsible for the changes. We suggest that the abnormal folding of 6F/3D epitope affected by pH masked the 4G8 epitope. A study of the binding of metal ions to Aβ1–42 suggested that Cu2+ and Zn2+ induced a conformational transition around the 6F/3D region at pH7.4, but did not affect the region when it was modified at pH4.6. However, Fe2+ had no effect, irrespective of pH. Aβ modified at pH 4.6 appeared to be relatively resistant to proteinase K compared with Aβs modified at pH7.4, and the former might be preferentially internalized and accumulated in a human glial cell. Our findings suggest the importance of microenvironmental changes, such as pH, in the early stage of formation of Aβ aggregates in the glial cell.


1991 ◽  
Vol 97 (6) ◽  
pp. 1121-1140 ◽  
Author(s):  
W D Niles ◽  
F S Cohen

It is known that fusion of influenza virus to host cell membranes is strongly promoted by acidic pH. We have determined conditions required to obtain pH-dependent fusion of influenza virus to planar bilayer membranes. The rate of viral fusion was determined from the flash rate of R18-labeled virions delivered to the surface of the planar membrane by pressure-ejection from a pipette. For a bilayer formed only of phospholipids and cholesterol, the fusion rate was independent of pH and unaffected by the phospholipid composition. When the gangliosides GD1a + GT1b were included in the planar membrane, however, the fusion rate varied steeply with pH. The rate at pH 7.4 in the presence of the gangliosides was about an order of magnitude less than in their absence. At pH less than approximately 5.5, the rate was about an order of magnitude greater in the presence of gangliosides than in their absence. The fusion rate with planar membranes containing globoside, a ceramide-backboned glycolipid, was also independent of pH, indicating that the pH dependence required sialic acid on the carbohydrate moiety of the glycolipid. The gangliosides GM1a and GM3, both of which possess sialic acid, produced the same pH-dependent fusion rate as seen with GD1a + GT1b, indicating that the presence, but not the location, of terminal sialic acids is critical. Incubating virus with soluble sialyllactose blocked fusion to both ganglioside-free and ganglioside-containing planar membranes. These results show that the pH dependence of influenza virion fusion arises from the interaction of the sialic acid receptor with the influenza hemagglutinin. A model for sialic acid-hemagglutinin interactions accounting for pH-dependent fusion is presented.


Sign in / Sign up

Export Citation Format

Share Document