Pore-water extraction from the unsaturated and saturated zones

2013 ◽  
Vol 50 (10) ◽  
pp. 1051-1058 ◽  
Author(s):  
Michael C. Moncur ◽  
David W. Blowes ◽  
Carol J. Ptacek

A simple, inexpensive method for extracting pore water from unsaturated soils, which uses a combination of immiscible fluid displacement, suction, and mechanical compression, is described. This method uses a squeezing chamber to contain the unsaturated sediments in aluminum core tubing to prevent exposure of the sediments and pore water to atmospheric O2 and subsequent oxidation reactions. Geochemical artifacts resulting from high-compression squeezing are prevented by maintaining the pressure applied during the squeezing at a minimum. Comparison of squeezed profiles with field measured profiles of pH, Eh (oxidation–reduction potential), alkalinity, and metal speciation indicates good agreement between these parameters using this method. Depending on the water content of the sediments, a range of water volumes (several millilitres to excess of 100 mL) can be extracted from a single core section 7.6 cm in diameter by 20 cm long. Pore water was produced immediately from sediments at near-saturated conditions, whereas several hours were required to obtain pore water from sediment with low moisture contents. Pore water was extracted from unsaturated sediments with as little as 6% volumetric moisture content. The squeezing technique provided water samples from both unsaturated and saturated sediments ranging from silt- to sand-sized particles. The method was applied successfully to collect pore waters from unsaturated sediments in neutral and acidic mine tailings; processed sands from oil sand operations, septic beds, agriculturally impacted sediments; and saturated soils from peat bogs, from wetlands, and at groundwater–surface interfaces.

2006 ◽  
Vol 3 (1) ◽  
pp. 53-64 ◽  
Author(s):  
H. Biester ◽  
D. Selimović ◽  
S. Hemmerich ◽  
M. Petri

Abstract. Halogens are strongly enriched in peat and peatlands and such they are one of their largest active terrestrial reservoir. The enrichment of halogens in peat is mainly attributed to the formation of organohalogens and climatically controlled humification processes. However, little is known about release of halogens from the peat substrate and the distribution of halogens in the peat pore water. In this study we have investigated the distribution of chlorine, bromine and iodine in pore water of three pristine peat bogs located in the Magellanic Moorlands, southern Chile. Peat pore waters were collected using a sipping technique, which allows in situ sampling down to a depth greater than 6m. Halogens and halogen species in pore water were determined by ion-chromatography (IC) (chlorine) and IC-ICP-MS (bromine and iodine). Results show that halogen concentrations in pore water are 15–30 times higher than in rainwater. Mean concentrations of chlorine, bromine and iodine in pore water were 7–15 mg l−1, 56–123 μg l−1, and 10–20 μg l−1, which correspond to mean proportions of 10–15%, 1–2.3% and 0.5–2.2% of total concentrations in peat, respectively. Organobromine and organoiodine were the predominant species in pore waters, whereas chlorine in pore water was mostly chloride. Advection and diffusion of halogens were found to be generally low and halogen concentrations appear to reflect release from the peat substrate. Release of bromine and iodine from peat depend on the degree of peat degradation, whereas this relationship is weak for chlorine. Relatively higher release of bromine and iodine was observed in less degraded peat sections, where the release of dissolved organic carbon (DOC) was also the most intensive. It has been concluded that the release of halogenated dissolved organic matter (DOM) is the predominant mechanism of iodine and bromine release from peat.


1978 ◽  
Vol 15 (1) ◽  
pp. 162-169 ◽  
Author(s):  
R. J. Patterson ◽  
S. K. Frape ◽  
L. S. Dykes ◽  
R. A. McLeod

A coring and squeezing technique has been modified and simplified to permit the collection of closely spaced samples of pore water from both the saturated and unsaturated zones on land, and bottom sediments in lakes and rivers. Samples of the pore water are obtained by placing short sections of sediment from freshly collected cores in a mechanical squeezer and applying pressure to extrude the contained fluid into a syringe. If coarse incompressible sediments are encountered, the pore water is removed by an immiscible-fluid displacement technique. The pore water samples are analyzed by standard methods for major and minor components. Also, in situ measurements of some parameters are carried out by directly inserting electrodes into the fresh sediment. These methods are being applied at a number of locations in southern Ontario to study the quality of waters in the unsaturated zone, the chemistry of natural and contaminated groundwaters, and the significance of seepage and baseflow in lakes and rivers respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. I. Poletaeva ◽  
E. N. Tirskikh ◽  
M. V. Pastukhov

AbstractThis study aimed to identify the factors responsible for the major ion composition of pore water from the bottom sediments of the Bratsk water reservoir, which is part of the largest freshwater Baikal-Angara water system. In the Bratsk reservoir, the overlying water was characterized as HCO3–Ca–Mg type with the mineralization ranging between 101.2 and 127.7 mg L−1 and pore water was characterized as HCO3–SO4–Ca, SO4–Cl–Ca–Mg and mixed water types, which had mineralization varying from 165.9 to 4608.1 mg L−1. The ionic composition of pore waters varied both along the sediment depth profile and across the water area. In pore water, the difference between the highest and lowest values was remarkably large: 5.1 times for K+, 13 times for Mg2+, 16 times for HCO3−, 20 times for Ca2+, 23 times for Na+, 80 times for SO42−, 105 times for Cl−. Such variability at different sites of the reservoir was due to the interrelation between major ion concentrations in the pore water and environmental parameters. The major factor responsible for pore water chemistry was the dissolution of sediment-forming material coming from various geochemical provinces. In the south part of the reservoir, Cl−, Na+ and SO42− concentrations may significantly increase in pore water due to the effect of subaqueous flow of highly mineralized groundwater.


We present an overview of geochemical data from pore waters and solid phases that clarify earliest diagenetic processes affecting modern, shallow marine carbonate sediments. Acids produced by organic matter decomposition react rapidly with metastable carbonate minerals in pore waters to produce extensive syndepositional dissolution and recrystallization. Stoichiometric relations among pore water solutes suggest that dissolution is related to oxidation of H 2 S which can accumulate in these low-Fe sediments. Sulphide oxidation likely occurs by enhanced diffusion of O 2 mediated by sulphide-oxidizing bacteria which colonize oxic/anoxic interfaces invaginating these intensely bioturbated sediments. Buffering of pore water stable isotopic compositions towards values of bulk sediment and rapid 45 Ca exchange rates during sediment incubations demonstrate that carbonate recrystallization is a significant process. Comparison of average biogenic carbonate production rates with estimated rates of dissolution and recrystallization suggests that over half the gross production is dissolved and/or recrystallized. Thus isotopic and elemental composition of carbonate minerals can experience significant alteration during earliest burial driven by chemical exchange among carbonate minerals and decomposing organic matter. Temporal shifts in palaeo-ocean carbon isotope composition inferred from bulk-rocks may be seriously compromised by facies-dependent differences in dissolution and recrystallization rates.


2008 ◽  
Vol 5 (6) ◽  
pp. 1615-1623 ◽  
Author(s):  
S. Fiedler ◽  
B. S. Höll ◽  
A. Freibauer ◽  
K. Stahr ◽  
M. Drösler ◽  
...  

Abstract. Numerous studies have dealt with carbon (C) contents in Histosols, but there are no studies quantifying the relative importance of the individual C components in pore waters. For this study, measurements were taken of all the carbon components (particulate organic carbon, POC; dissolved organic carbon, DOC; dissolved inorganic carbon, DIC; dissolved methane, CH4) in the soil pore water of calcareous fens under three different water management regimes (re-wetted, deeply and moderately drained). Pore water was collected weekly or biweekly (April 2004 to April 2006) at depths between 10 and 150 cm. The main results obtained were: (1) DIC (94–280 mg C l−1) was the main C-component. (2) POC and DOC concentrations in the pore water (14–125 mg C l−1 vs. 41–95 mg C l−1) were pari passu. (3) Dissolved CH4 was the smallest C component (0.005–0.9 mg C l−1). Interestingly, about 30% of the POM particles were colonized by microbes indicating that they are active in the internal C turnover. Certainly, both POC and DOC fractions are essential components of the C budget of peatlands. Furthermore, dissolved CO2 in all forms of DIC appears to be an important part of peatland C-balance.


2013 ◽  
Vol 10 (2) ◽  
pp. 891-904 ◽  
Author(s):  
K.-H. Knorr

Abstract. Dissolved organic carbon (DOC) exports from many catchments in Europe and North-America are steadily increasing. Several studies have sought to explain this observation. As possible causes, a decrease in acid rain or sulfate deposition, concomitant reductions in ionic strength and increasing temperatures were identified. DOC often originates from riparian wetlands; but here, despite higher DOC concentrations, ionic strength in pore waters usually exceeds that in surface waters. In the catchment under study, DOC concentrations were synchronous with dissolved iron concentrations in pore and stream water. This study aims at testing the hypothesis that DOC exports are mediated by iron reduction/oxidation cycles. Following the observed hydrographs, δ18O of water and DOC fluorescence, the wetlands were identified as the main source of DOC. Antecedent biogeochemical conditions, i.e., water table levels in the wetlands, influenced the discharge patterns of nitrate, iron and DOC during an event. The correlation of DOC with pH was positive in pore waters, but negative in surface waters; it was negative for DOC with sulfate in pore waters, but only weak in surface waters. Though, the positive correlation of DOC with iron was universal for pore and surface water. The decline of DOC and iron concentrations in transition from anoxic wetland pore water to oxic stream water suggests a flocculation of DOC with oxidising iron, leading to a drop in pH in the stream during high DOC fluxes. The pore water did not per se differ in pH. There is, thus, a need to consider processes more thoroughly of DOC mobilisation in wetlands when interpreting DOC exports from catchments. The coupling of DOC with iron fluxes suggested that increased DOC exports could at least, in part, be caused by increasing activities in iron reduction, possibly due to increases in temperature, increasing wetness of riparian wetlands, or by a shift from sulfate dominated to iron reduction dominated biogeochemical regimes.


2012 ◽  
Vol 84 (2) ◽  
pp. 427-442 ◽  
Author(s):  
Winston F.O. Gonçalves ◽  
Wanilson Luiz-Silva ◽  
Wilson Machado ◽  
Erico C. Nizoli ◽  
Ricardo E. Santelli

The geochemical composition of sediment pore water was investigated in comparison with the composition of sediment particles and surface water in an estuary within one of the most industrialized areas in Latin America (Santos-Cubatão estuarine system, SE Brazil). Pore and surface waters presented anomalously high levels of F-, NH4+, Fe, Mn and P due to two industrial point sources. In the summer, when SO4(2-)/Cl- ratios suggested an enhanced sulfate reduction, the higher dissolved levels observed in pore waters for some metals (e.g., Cu and Ni) were attributed to reductive dissolution of oxidized phases. Results evidenced that the risks of surface water concentration increase due to diffusion or advection from pore water are probably dependent on coupled influences of tidal pumping and groundwater inputs.


Fluid expulsion from the Cascadia accretionary prism off Oregon results from porosity reduction by compaction, and by cementation as methane-rich pore waters precipitate diagenetic carbonate deposits near the sediment-water interface. Porosity changes suggest that dewatering begins 5-6 km west of the base of the slope, in a proto-deformation zone, GLORIA imagery of surficial carbonate deposits confirms that fluid is actively expelled from this zone; there is no such evidence further west in Cascadia Basin. Within the uncertainties of the data, porosities do not decrease landward beneath the prism. This pattern is consistent with imbricate thrust faulting on the slope which provides the vertical load to induce compactive dewatering, and may physically import as much as 50% of the total fluid volume in the section. A simple vertical compaction model suggests that significant pore water volumes have been expelled from the lower slope, but at flux rates (10 -11 -10 -12 m 3 m -2 s -1 ) which are orders of magnitude less than those measured at individual vent sites (10 -6 m 3 m -2 s -1 ). Faulting clearly controls some fluid expulsion, but GLORIA data suggest that repeated local discharge, cementation, and abandonment lead to dispersed accumulations of diagenetic carbonate.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Wan-Huan Zhou

Axisymmetric consolidation in a sand drain foundation is a common problem in foundation engineering. In unsaturated soils, the excess pore-water and pore-air pressures simultaneously change during the consolidation procedure; and the solutions are not easy to obtain. The present paper uses the differential quadrature method (DQM) for axisymmetric consolidation of unsaturated soils in a sand drain foundation. The radial seepage of sand drain foundation is considered based on the framework of Fredlund’s one-dimensional consolidation theory in unsaturated soils. With the use of Darcy’s law and Fick’s law, the polar governing equations of excess pore-air and pore-water pressures of axisymmetric consolidation are derived. By using DQM, the two governing equations are transformed into two sets of ordinary differential equations. Then the solutions of excess pore-water and pore-air pressures can be obtained by Rong-Kutta method. The DQM solution can be used to deal with the case of nonuniform initial pore-air and pore-water distributions. Finally, case studies are presented to investigate the behavior of axisymmetric consolidation of unsaturated soils. The convergence analysis and average degree of consolidation, the settlements in radial and vertical direction, and the effects of different initial excess pore pressure distributions are presented, and discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document