Fragmentation and patch size shape genetic structure of brook trout populations

2013 ◽  
Vol 70 (5) ◽  
pp. 678-688 ◽  
Author(s):  
Andrew R. Whiteley ◽  
Jason A. Coombs ◽  
Mark Hudy ◽  
Zachary Robinson ◽  
Amanda R. Colton ◽  
...  

We tested the relative influence of habitat patch size and connectivity on genetic structure and effective population size in eight brook trout (Salvelinus fontinalis) habitat patches in a watershed in Virginia, USA. Variation at eight microsatellite loci in 2229 young-of-the-year brook trout for two successive cohorts (2010 and 2011) was examined. Genetic differentiation across all populations was pronounced. Overall [Formula: see text] was 0.397 (95% CI: 0.322–0.525) and overall FST was 0.124 (95% CI: 0.096–0.159). Above-barrier patch size had a strong positive relationship with genetic diversity, [Formula: see text], and genetic differentiation. Our analysis is consistent with greater extinction risk in smaller above-barrier patches. Larger above-barrier patches contained greater genetic diversity but reduced [Formula: see text] relative to adjacent below-barrier patches. The primary effect of barriers may be to reduce available above-barrier spawning habitat, even for larger above-barrier patches. Below-barrier patches also showed evidence of reduced genetic diversity and lack of connectivity. Genetic monitoring focused at gaining a broader understanding of the relationships here will be necessary to fully evaluate local extinction risks.

AoB Plants ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Amanda R Silva ◽  
Luciana C Resende-Moreira ◽  
Carolina S Carvalho ◽  
Eder C M Lanes ◽  
Mabel P Ortiz-Vera ◽  
...  

Abstract Conserving genetic diversity in rare and narrowly distributed endemic species is essential to maintain their evolutionary potential and minimize extinction risk under future environmental change. In this study we assess neutral and adaptive genetic structure and genetic diversity in Brasilianthus carajensis (Melastomataceae), an endemic herb from Amazonian Savannas. Using RAD sequencing we identified a total of 9365 SNPs in 150 individuals collected across the species’ entire distribution range. Relying on assumption-free genetic clustering methods and environmental association tests we then compared neutral with adaptive genetic structure. We found three neutral and six adaptive genetic clusters, which could be considered management units (MU) and adaptive units (AU), respectively. Pairwise genetic differentiation (FST) ranged between 0.024 and 0.048, and even though effective population sizes were below 100, no significant inbreeding was found in any inferred cluster. Nearly 10 % of all analysed sequences contained loci associated with temperature and precipitation, from which only 25 sequences contained annotated proteins, with some of them being very relevant for physiological processes in plants. Our findings provide a detailed insight into genetic diversity, neutral and adaptive genetic structure in a rare endemic herb, which can help guide conservation and management actions to avoid the loss of unique genetic variation.


Author(s):  
Angélica Chávez-Cortázar ◽  
Ken Oyama ◽  
Maried Ochoa-Zavala ◽  
Martín Mata-Rosas ◽  
Emily Veltjen ◽  
...  

AbstractSpecial conservation efforts should be made for relict species, as they usually have small population sizes and restricted distributions, placing them in critical extinction risk. To achieve conservation, information about genetic diversity distribution is needed. Here, using nine nuclear microsatellites, we analyzed 23 populations of five recently described species of Magnolia distributed in Mexico, which were previously assigned to Magnolia dealbata. We aimed to determine the level of genetic diversity and the distribution of genetic variation and proposed conservation measures. Compared to other endemic and relict species, we found a moderate level of genetic diversity in most populations; however, we identified two populations with no genetic variation. Additionally, we found evidence of positive values of inbreeding likely due to geitonogamy. We found a strong population structure, low effective population size, and no evidence of bottlenecks. Patterns of genetic differentiation did not support the morphological distinction of five species, so we hypothesized that the gene pools may instead represent well-differentiated populations of a single species. We argue that the pattern of genetic differentiation is explained by the natural fragmentation of the cloud forests after glaciation events, and the effects of genetic drift in small populations poorly connected by gene flow. Despite the moderate levels of genetic diversity, special attention is needed to guarantee conservation, with emphasis on the populations in the central region of the country as well as the valuable populations identified in the southwestern region.


2019 ◽  
Vol 286 (1916) ◽  
pp. 20191989 ◽  
Author(s):  
M. C. Yates ◽  
E. Bowles ◽  
D. J. Fraser

Little empirical work in nature has quantified how wild populations with varying effective population sizes and genetic diversity perform when exposed to a gradient of ecologically important environmental conditions. To achieve this, juvenile brook trout from 12 isolated populations or closed metapopulations that differ substantially in population size and genetic diversity were transplanted to previously fishless ponds spanning a wide gradient of ecologically important variables. We evaluated the effect of genome-wide variation, effective population size ( N e ), pond habitat, and initial body size on two fitness correlates (survival and growth). Genetic variables had no effect on either fitness correlate, which was determined primarily by habitat (pond temperature, depth, and pH) and initial body size. These results suggest that some vertebrate populations with low genomic diversity, low N e , and long-term isolation can represent important sources of variation and are capable of maintaining fitness in, and ultimately persisting and adapting to, changing environments. Our results also reinforce the paramount importance of improving available habitat and slowing habitat degradation for species conservation.


2021 ◽  
Author(s):  
Guai-qiang Chai ◽  
Yizhong Duan ◽  
Peipei Jiao ◽  
Zhongyu Du ◽  
Furen Kang

Abstract Background:Elucidating and revealing the population genetic structure, genetic diversity and recombination is essential for understanding the evolution and adaptation of species. Ammopiptanthus, which is an endangered survivor from the Tethys in the Tertiary Period, is the only evergreen broadleaf shrub grown in Northwest of China. However, little is known about its genetic diversity and underlying adaptation mechanisms. Results:Here, 111 Ammopiptanthus individuals collected from fifteen natural populations in estern China were analyzed by means of the specific locus amplified fragment sequencing (SLAF-seq). Based on the single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) detected by SLAF-seq, genetic diversity and markers associated with climate and geographical distribution variables were identified. The results of genetic diversity and genetic differentiation revealed that all fifteen populations showed medium genetic diversity, with PIC values ranging from 0.1648 to 0.3081. AMOVA and Fst indicated that a low genetic differentiation existed among populations. Phylogenetic analysis showed that NX-BG and NMG-DQH of fifteen populations have the highest homology,while the genetic structure analysis revealed that these Ammopiptanthus germplasm accessions were structured primarily along the basis of their geographic collection, and that an extensive admixture occurred in each group. In addition, the genome-wide linkage disequilibrium (LD) and principal component analysis showed that Ammopiptanthus nanus had a more diverse genomic background, and all genetic populations were clearly distinguished, although different degrees of introgression were detected in these groups. Conclusion:Our study could provide guidance to the future design of association studies and the systematic utilization and protection of the genetic variation characterizing the Ammopiptanthus.


2010 ◽  
Vol 61 (8) ◽  
pp. 918 ◽  
Author(s):  
Meaghan L. Rourke ◽  
Helen C. McPartlan ◽  
Brett A. Ingram ◽  
Andrea C. Taylor

Stocking wild fish populations with hatchery-bred fish has numerous genetic implications for fish species worldwide. In the present study, 16 microsatellite loci were used to determine the genetic effects of nearly three decades of Murray cod (Maccullochella peelii peelii) stocking in five river catchments in southern Australia. Genetic parameters taken from scale samples collected from 1949 to 1954 before the commencement of stocking were compared with samples collected 16 to 28 years after stocking commenced, and with samples from a local hatchery that supplements these catchments. Given that the five catchments are highly connected and adult Murray cod undertake moderate migrations, we predicted that there would be minimal population structuring of historical samples, whereas contemporary samples may have diverged slightly and lost genetic diversity as a result of stocking. A Bayesian Structure analysis indicated genetic homogeneity among the catchments both pre- and post-stocking, indicating that stocking has not measurably impacted genetic structure, although allele frequencies in one catchment changed slightly over this period. Current genetic diversity was moderately high (HE = 0.693) and had not changed over the period of stocking. Broodfish had a similar level of genetic diversity to the wild populations, and effective population size had not changed substantially between the two time periods. Our results may bode well for stocking programs of species that are undertaken without knowledge of natural genetic structure, when river connectivity is high, fish are moderately migratory and broodfish are sourced locally.


2018 ◽  
Vol 66 (6) ◽  
pp. 335
Author(s):  
T. Pan ◽  
P. Yan ◽  
M. Yang ◽  
H. Wang ◽  
I. Ali ◽  
...  

Dispersal is a key component of a species’ life history, by influencing population persistence, genetic structure, adaptation and maintenance of genetic diversity. The Asiatic toad (Bufo gargarizans) is a widespread species in east Asia. However, we still have no knowledge of what kind of geographical scale equates to genetic differentiation within B. gargarizans. In this study, the population genetics of B. gargarizans was studied at five localities, with the Yangtze River running through the sampling area, in order to detect the level of genetic differentiation and the natural barriers to the species’ dispersal on a small geographic scale, by means of the development and use of novel microsatellite loci. These markers revealed a relatively high level of genetic diversity. Distinct genetic structure among populations in B. gargarizans was observed, as described by genetic distance, AMOVA, PCA and Geneland results. A weak but significant positive correlation between genetic distance and geographical distance. The combination of these findings suggests that the Yangtze River and geographic distance may act as effective barriers for B. gargarizans. These results serve as benchmark data for understanding the impacts of dispersal barriers and continued landscape research on B. gargarizans.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 938 ◽  
Author(s):  
Islam ◽  
Li ◽  
Liu ◽  
Berihulay ◽  
Abied ◽  
...  

: Detection of selection footprints provides insight into the evolution process and the underlying mechanisms controlling the phenotypic diversity of traits that have been exposed to selection. Selection focused on certain characters, mapping certain genomic regions often shows a loss of genetic diversity with an increased level of homozygosity. Therefore, the runs of homozygosity (ROHs), homozygosity by descent (HBD), and effective population size (Ne) are effective tools for exploring the genetic diversity, understanding the demographic history, foretelling the signature of directional selection, and improving the breeding strategies to use and conserve genetic resources. We characterized the ROH, HBD, Ne, and signature of selection of six Chinese goat populations using single nucleotide polymorphism (SNP) 50K Illumina beadchips. Our results show an inverse relationship between the length and frequency of ROH. A long ROH length, higher level of inbreeding, long HBD segment, and smaller Ne in Guangfeng (GF) goats suggested intensive selection pressure and recent inbreeding in this breed. We identified six reproduction-related genes within the genomic regions with a high ROH frequency, of which two genes overlapped with a putative selection signature. The estimated pair-wise genetic differentiation (FST) among the populations is 9.60% and the inter- and intra-population molecular variations are 9.68% and 89.6%, respectively, indicating low to moderate genetic differentiation. Our selection signatures analysis revealed 54 loci harboring 86 putative candidate genes, with a strong signature of selection. Further analysis showed that several candidate genes, including MARF1, SYCP2, TMEM200C, SF1, ADCY1, and BMP5, are involved in goat fecundity. We identified 11 candidate genes by using cross-population extended haplotype homozygosity (XP-EHH) estimates, of which MARF1 and SF1 are under strong positive selection, as they are differentiated in high and low reproduction groups according to the three approaches used. Gene ontology enrichment analysis revealed that different biological pathways could be involved in the variation of fecundity in female goats. This study provides a new insight into the ROHs patterns for maintenance of within breed diversity and suggests a role of positive selection for genetic variation influencing fecundity in Chinese goat.


2019 ◽  
Vol 100 (4) ◽  
pp. 1169-1181 ◽  
Author(s):  
Russell S Pfau ◽  
Jim R Goetze ◽  
Robert E Martin ◽  
Kenneth G Matocha ◽  
Allan D Nelson

Abstract The Texas kangaroo rat (Dipodomys elator) is listed as a threatened species in Texas because of its scarcity and small geographic range. We assessed patterns of genetic diversity in D. elator that could affect extinction risk or influence management decisions. Specific objectives included: 1) document levels of genetic diversity, 2) document the degree and patterns of genetic divergence among localities, and 3) compare levels of genetic diversity between different time periods at the same locality. Portions of the mitochondrial genome (mtDNA; control region, cytochrome c oxidase subunit I, and cytochrome b) were sequenced and nuclear microsatellites were examined. Low mtDNA diversity was observed, which could be explained by an historical, species-wide genetic bottleneck. In contrast, microsatellites exhibited ample variation, and analyses were conducted using data from 11 loci and four populations (designated Quanah, Iowa Park, Vernon, and Harrold). Allelic diversity and heterozygosity were similar between populations and temporal samples. Estimates of effective population size (Ne) ranged from 5 to 856, depending on method and population, with Iowa Park showing consistently lower values than Quanah. All methods addressing population structure indicated that the Iowa Park population was divergent from the others, with Vernon and Harrold showing a somewhat intermediate relationship but with a closer affiliation with Quanah than Iowa Park, despite their closer proximity to Iowa Park. This pattern did not conform to isolation by distance, thus genetic drift appears to have played a greater role than gene flow in establishing genetic structure. There was much less difference between temporal samples compared to geographic samples, indicating that genetic drift has had only minimal impacts in shifting allelic frequencies over the time periods examined (17–36 years).


2020 ◽  
Author(s):  
Godfrey Kinyori Wagutu ◽  
Xiangrong Fan ◽  
Wenlong Fu ◽  
Wei Li ◽  
Yuanyuan Chen

AbstractGlobal aquatic habitats are undergoing rapid degradation and fragmentation as a result of land-use change and climate change. Understanding the genetic variability and adaptive potential of aquatic plant species is thus important for conservation purposes. In this study, we investigated the role of environment, landscape heterogeneity and geographical distance in shaping the genetic structure of 28 natural populations of Zizania latifolia (Griseb.) Turcz. Ex Stapf in China based on 25 microsatellite markers. Genetic structure was investigated by analysis of molecular variance (AMOVA), estimation of FST, Bayesian clustering and Thermodynamic Integration (TI) methods. Isolation by environment (IBE), isolation by resistance (IBR) and isolation by distance (IBD) hypotheses were compared using a reciprocal causal model (RCM). Further, generalized linear models and spatially explicit mixed models, by using geographic, landscape and genetic variables, were developed to elucidate the role of environment in driving Z. latifolia genetic diversity. The genetic differentiation across all populations was high: FST = 0.579; Øpt = 0.578. RCM exclusively supported IBE in shaping genetic structuring, only partial support for IBR, but not for IBD. Maximum temperature of the warmest month and precipitation seasonality were the plausible parameters responsible for genetic diversity. After controlling for spatial effect and landscape complexity, precipitation seasonality was significantly associated with genetic diversity. Based on these findings, genetic structure of Z. latifolia across China seem to be as a result of local adaptation. Environmental gradient and topographical barriers, rather than geographical isolation, influence genetic differentiation of aquatic species across China resulting in instances of local adaptation.


2021 ◽  
Author(s):  
Yuan Li ◽  
Fangrui Lou ◽  
Hai Li ◽  
Rui Wang ◽  
Zizi Cai ◽  
...  

Abstract Background: Factors such as climate change (especially ocean warming) and overfishing have led to a decline in the supply of Pampus echinogaster and a trend of decreasing age. Exploring the genetic structure and local adaptive evolutionary mechanisms is crucial for the management of P. echinogaster. Results: This population genomic study of nine geographical populations of P. echinogaster in China was conducted by specific-locus amplified fragment sequencing (SLAF-seq). A total of 935,215 SLAF tags were obtained, and the average sequencing depth of the SLAF tags was 20.80×. After filtering, a total of 46,187 high-consistency genome-wide single nucleotide polymorphisms (SNPs) were detected. Based on all SNPs, the overall genetic diversity among the nine P. echinogaster populations was high. The Shantou population had the lowest genetic diversity, and the Tianjin population had the highest. Meanwhile, the population genetic structure based on all SNPs revealed significant gene exchange and insignificant genetic differentiation between the nine P. echinogaster populations. Based on pairwise genetic differentiation (FST), we further screened 1,852 outlier SNPs that might have been affected by habitat selection and annotated SLAF tags containing these 1,852 outlier SNPs using Blast2GO. The annotation results showed that the genomic sequences at the outlier SNPs were mainly related to material metabolism, ion transport, breeding, stress response, and inflammatory reactions, which may be related to the adaptation of P. echinogaster to different environmental conditions (such as water temperature and salinity) in different sea areas.Conclusions: The high genetic similarity of nine P. echinogaster populations may have been caused by the population expansion after the last glacial period, the lack of balance between migration and genetic drift, and the long-distance diffusion of eggs and larvae. We suspected that variation of these genes associated with material metabolism, ion transfer, breeding, stress reactions, and inflammatory reactions were critical for adaptation to spatially heterogeneous temperatures in natural P. echinogaster populations.


Sign in / Sign up

Export Citation Format

Share Document