Anisotropic electrical properties of sculptured thin films

2013 ◽  
Vol 91 (8) ◽  
pp. 658-661 ◽  
Author(s):  
C.B. Nelson ◽  
T.H. Gilani

The anisotropy in DC electrical resistivity of a chromium (Cr) sculptured thin film (STF) prepared on a glass substrate is measured and explained using a simple linear dielectric model for electrical conduction in metallic STFs. The experimental anisotropy as a function of growth angle of Cr columns on a glass substrate is in good agreement with the model.

2009 ◽  
Vol 12 (12) ◽  
pp. 59-64
Author(s):  
Binh Van Ho ◽  
Hung Vu Tuan Le ◽  
Nhien Thi Ngoc Nguyen ◽  
Dat Thanh Huynh ◽  
Phuong Ai Duong ◽  
...  

The Ti-doped Zno films were deposited onto glass substrates from ceramic targets ZnO with various Ti concentrations using a DC magnetron sputtering. The experimental results show that all thin films are transparent and conductive oxide films, with the appropriate Ti concentration (⁓1.5% Ti), the conductance of films can be improved. Optical characteristics of thin films was determined by UV-V is spectroscopy. The thickness of thin films was measured by Stylus method. The electrical resistivity was measured by four-point probe, and the roughness of films was determined by AFM.


2014 ◽  
Vol 11 (2) ◽  
pp. 598-604
Author(s):  
Baghdad Science Journal

Polyaniline organic Semiconductor polymer thin films have been prepared by oxidative polymerization at room temperature, this polymer was deposited on glass substrate with thickness 900nm, FTIR spectra was tested , the structural,optical and electrical properties were studied through XRD ,UV-Vis ,IR measurements ,the results was appeared that polymer thin film sensing to NH3 gas.


2011 ◽  
Vol 1352 ◽  
Author(s):  
Jiguang Li ◽  
Lin Pu ◽  
Mool C. Gupta

ABSTRACTRecently, few tens of nanometer thin films of TiOx have been intensively studied in applications for organic solar cells as optical spacers, environmental protection and hole blocking. In this paper we provide initial measurements of optical and electrical properties of TiOx thin films and it’s applications in solar cell and sensor devices. The TiOx material was made through hydrolysis of the precursor synthesized from titanium isopropoxide, 2-methoxyethanol, and ethanolamine. The TiOx thin films of thickness between 20 nm to 120 nm were obtained by spin coating process. The refractive index of TiOx thin films were measured using an ellipsometric technique and an optical reflection method. At room temperature, the refractive index of TiOx thin film was found to be 1.77 at a wavelength of 600 nm. The variation of refractive index under various thermal annealing conditions was also studied. The increase in refractive index with high temperature thermal annealing process was observed, allowing the opportunity to obtain refractive index values between 1.77 and 2.57 at a wavelength 600 nm. The refractive index variation is due to the TiOx phase and density changes under thermal annealing.The electrical resistance was measured by depositing a thin film of TiOx between ITO and Al electrode. The electrical resistivity of TiOx thin film was found to be 1.7×107 Ω.cm as measured by vertical transmission line method. We have also studied the variation of electrical resistivity with temperature. The temperature coefficient of electrical resistance for 60 nm TiOx thin film was demonstrated as - 6×10-3/°C. A linear temperature dependence of resistivity between the temperature values of 20 – 100 °C was observed.The TiOx thin films have been demonstrated as a low cost solution processable antireflection layer for Si solar cells. The results indicate that the TiOx layer can reduce the surface reflection of the silicon as low as commonly used vacuum deposited Si3N4 thin films.


2018 ◽  
Vol 1 (1) ◽  
pp. 26-31 ◽  
Author(s):  
B Babu ◽  
K Mohanraj ◽  
S Chandrasekar ◽  
N Senthil Kumar ◽  
B Mohanbabu

CdHgTe thin films were grown onto glass substrate via the Chemical bath deposition technique. XRD results indicate that a CdHgTe formed with a cubic polycrystalline structure. The crystallinity of CdHgTe thin films is gradually deteriorate with increasing the gamma irradiation. EDS spectrums confirms the presence of Cd, Hg and Te elements. DC electrical conductivity results depicted the conductivity of CdHgTe increase with increasing a gamma ray dosage


2011 ◽  
Vol 13 ◽  
pp. 87-92 ◽  
Author(s):  
M.S.P Sarah ◽  
F.S. Zahid ◽  
M.Z. Musa ◽  
U.M. Noor ◽  
Z. Shaameri ◽  
...  

The photoconductivity of a nanocomposite MEH-PPV:TiO2 thin film is investigated. The nanocomposite MEH-PPV:TiO2 thin film was deposited on a glass substrate by spin coating technique. The composition of the TiO2 powder was varied from 5 wt% to 20 wt% (with 5 wt% interval). The concentration of the MEH-PPV is given by 1 mg/1 ml. The current voltage characteristics were measured in dark and under illumination. The photoconductivity showed increment in value as the composition of the TiO2 is raised in the polymer based solution. The absorption showed augmentation as the amount of TiO2 is increased. The escalation of the current voltage is then supported by the results of surface morphology.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2021 ◽  
Vol 14 (02) ◽  
pp. 2151012
Author(s):  
Natangue Heita Shafudah ◽  
Hiroki Nagai ◽  
Mitsunobu Sato

Cubic or tetragonal zirconia thin films of transparent and 100 nm thickness were selectively formed on a quartz glass substrate by heat-treating the molecular precursor films involving Zr(IV) complexes of nitrilotriacetic acid, at 500[Formula: see text]C in air for 1 h. A precursor solution was prepared by a reaction of the ligand and zirconium tetrabutoxide in alcohol under the presence of butylamine. By the addition of H2O2 or H2O into the solution, the spin-coated precursor films were converted to cubic zirconia thin films by the abovementioned procedure. Further, the identical phase was produced also in the case of the electro-sprayed precursor film which was formed by an addition of H2O2 into the solution. On the other hand, the tetragonal zirconia thin film was obtained from a precursor film formed by using a solution dissolving the original Zr(IV) complex of the ligand, without H2O2 nor H2O. The crystal structure of all thin films was determined by using both the X-ray diffraction (XRD) patterns and Raman spectra. Thus, the zirconia thin films of both crystals could be facilely and selectively obtained with no use of hetero-metal ion stabilizers. The XPS spectra of the thin films show that the O/Zr ratio of the cubic phase is 1.37 and slightly larger than tetragonal one (1.29), and also demonstrate that the nitrogen atoms, which may contribute to stabilize these metastable phases at room temperature, of about 5−7 atomic% was remained in the resultant thin films. The adhesion strengths of cubic zirconia thin film onto the quartz glass substrate was 68 MPa and larger than that of tetragonal one, when the precursor films were formed via a spin coating process. The optical and surface properties of the thin films were also examined in relation to the crystal systems.


2021 ◽  
Vol 902 ◽  
pp. 65-70
Author(s):  
Samar Aboulhadeed ◽  
Mohsen Ghali ◽  
Mohamad M. Ayad

We report on a development of the structural, optical and electrical properties of poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) conducting polymer thin films. The PEDOT:PSS thin films were deposited by a controlled thin film applicator and their physical properties were found to be effectively modified by isopropanol. The deposited films were investigated by several techniques including XRD, UV–Vis, SPM and Hall-effect. Interestingly, by optimizing the PEDOTS:PSS/ISO volume ratio (v:v), we find that the film charge carriers type can be switched from p to n-type with a high bulk carriers concentration reaching 6×1017 cm-3. Moreover, the film surface roughness becomes smoother and reaching a small value of only 1.9 nm. Such development of the PEDOT:PSS film properties makes it very promising to act as an electron transport layer for different energy applications.


2021 ◽  
Vol 16 (2) ◽  
pp. 136-141
Author(s):  
Jingyuan Zhang ◽  
Yusheng Liu ◽  
Jianing Song ◽  
Mu Zhang ◽  
Xiaodong Li

The Cu2ZnSnS4 (CZTS) thin films were fabricated by the direct solution coating method using a novel non-particulate ink. The ink was formulated using ethanol as the solvent and 1,2-diaminopropane as the complex-ing agent. The pure phase kesterite films with good crystallinity, large-sized crystals and excellent electrical properties were prepared by the spin-coating deposition technique using the homogeneous and air-stable ink. It was found that the subsequent pre-treatment temperature had an influence on the film crystallinity and electrical properties. The best film was obtained by pre-treating the spin-coated film at 250 °C, and then post-annealing at 560 °C. The film shows a narrow bandgap of 1.52 eV and excellent electrical properties, with a resistivity of 0.07 Ocm, carrier concentration of 3.0 x 1017 cm-3, and mobility of 4.15 cm2 V-1 s-1. The novel non-particulate ink is promising for printing high quality CZTS thin films as absorber layers of thin film solar cells.


Sign in / Sign up

Export Citation Format

Share Document