scholarly journals STUDYING THE TRANSPARENT AND ELECTRICAL PROPERTIES OF ZnO:Ti THIN FILM WHICH IS PREPARED BY DC MAGNETRON SPUTTERINGSPUTTERING

2009 ◽  
Vol 12 (12) ◽  
pp. 59-64
Author(s):  
Binh Van Ho ◽  
Hung Vu Tuan Le ◽  
Nhien Thi Ngoc Nguyen ◽  
Dat Thanh Huynh ◽  
Phuong Ai Duong ◽  
...  

The Ti-doped Zno films were deposited onto glass substrates from ceramic targets ZnO with various Ti concentrations using a DC magnetron sputtering. The experimental results show that all thin films are transparent and conductive oxide films, with the appropriate Ti concentration (⁓1.5% Ti), the conductance of films can be improved. Optical characteristics of thin films was determined by UV-V is spectroscopy. The thickness of thin films was measured by Stylus method. The electrical resistivity was measured by four-point probe, and the roughness of films was determined by AFM.

2009 ◽  
Vol 24 (2) ◽  
pp. 441-447 ◽  
Author(s):  
Seung Wook Shin ◽  
S.M. Pawar ◽  
Tae-Won Kim ◽  
Jong-Ha Moon ◽  
Jin Hyeok Kim

Thin films of Ga-doped ZnO (GZO) were prepared on glass and Al2O3 (0001) substrates by using RF magnetron sputtering at a substrate temperature of 350 °C, RF power of 175 W, and working pressure of 6 mTorr. The effect of film thickness and substrate type on the structural and electrical properties of the thin films was investigated. X-ray diffraction study showed that GZO thin films on glass substrates were grown as a polycrystalline hexagonal wurtzite phase with a c-axis preferred, out-of-plane orientation and random in-plane orientation. However, GZO thin films on Al2O3 (0001) substrates were epitaxially grown with an orientation relationship of . The structural images from scanning electron microscopy and atomic force microscopy showed that the GZO thin films on glass substrates had a rougher surface morphology than those on Al2O3 (0001) substrates. The electrical resistivity of 1000 nm-thick GZO thin films grown on glass and Al2O3 (0001) substrates was 3.04 × 10−4 Ωcm and 1.50 × 10−4 Ωcm, respectively. It was also found that the electrical resistivity difference between the films on the two substrates decreased from 9.48 × 10−4 Ωcm to 1.45 × 10−4 Ωcm with increasing the film thickness from 100 nm to 1000 nm.


2016 ◽  
Vol 848 ◽  
pp. 498-504
Author(s):  
Xue Xian Cai ◽  
Chen Bing Pi ◽  
Fu Liang Shang ◽  
Hai Peng Yang ◽  
Ji Hua Gao ◽  
...  

Ti-Ga co-doped ZnO (GTZO) ceramic targets were prepared by sintering in air at l300°C for 3 h. The morphologies, structure, densification behavior, mechanical and electrical properties of the sintered ceramic targets with different doping concentration were investigated. The optimal doping concentration was obtained. The results indicated that the sintered GTZO targets with total co-doping amount of 2wt% (1wt% Ga2O3 and 1wt% TiO2) had the best properties combination, which was corresponding to an electrical resistivity of 1.56×10-3Ω·cm, a relative density of 99%, a Vickers hardness of 378MPa and a bending strength of 99.4 MPa. The sintered targets were then used to deposit GTZO thin film by pulsed laser deposition. The electrical resistivity of the GTZO thin film achieved 3.78×10-3 Ω·cm, and the optical transmittance was above 85% in the visible light region. This kind of GTZO ceramic has a potential to be used as a high-quality sputtering target to deposit ZnO-based transparent conductive films with good optical and electrical properties.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
J. Santos Cruz ◽  
S. A. Mayén Hernández ◽  
F. Paraguay Delgado ◽  
O. Zelaya Angel ◽  
R. Castanedo Pérez ◽  
...  

Effects on the optical, electrical, and photocatalytic properties of undoped CuS thin films nanodisks vacuum annealed at different temperatures were investigated. The chemical bath prepared CuS thin films were obtained at 40°C on glass substrates. The grain size of13.5±3.5 nm was computed directly from high-resolution transmission electron microscopy (HRTEM) images. The electrical properties were measured by means of both Hall effect at room temperature and dark resistivity as a function of the absolute temperature 100–330 K. The activation energy values were calculated as 0.007, 0.013, and 0.013 eV for 100, 150, and 200°C, respectively. The energy band gap of the films varied in the range of 1.98 up to 2.34 eV. The photocatalytic activity of the CuS thin film was evaluated by employing the degradation of aqueous methylene blue solution in the presence of hydrogen peroxide. The CuS sample thin film annealed in vacuum at 150°C exhibited the highest photocatalytic activity in presence of hydrogen peroxide.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 252 ◽  
Author(s):  
A. M. Alsaad ◽  
A. A. Ahmad ◽  
I. A. Qattan ◽  
Qais M. Al-Bataineh ◽  
Zaid Albataineh

Undoped ZnO and group III (B, Al, Ga, and In)-doped ZnO thin films at 3% doping concentration level are dip-coated on glass substrates using a sol-gel technique. The optical properties of the as-prepared thin films are investigated using UV–Vis spectrophotometer measurements. Transmittance of all investigated thin films is found to attain high values of ≥80% in the visible region. We found that the index of refraction of undoped ZnO films exhibits values ranging between 1.6 and 2.2 and approximately match that of bulk ZnO. Furthermore, we measure and interpret nonlinear optical parameters and the electrical and optical conductivities of the investigated thin films to obtain a deeper insight from fundamental and practical points of view. In addition, the structural properties of all studied thin film samples are investigated using the XRD technique. In particular, undoped ZnO thin film is found to exhibit a hexagonal structure. Due to the large difference in size of boron and indium compared with that of zinc, doping ZnO thin films with these two elements is expected to cause a phase transition. However, Al-doped ZnO and Ga-doped ZnO thin films preserve the hexagonal phase. Moreover, as boron and indium are introduced in ZnO thin films, the grain size increases. On the other hand, grain size is found to decrease upon doping ZnO with aluminum and gallium. The drastic enhancement of optical properties of annealed dip-synthesized undoped ZnO thin films upon doping with group III metals paves the way to tune these properties in a skillful manner, in order to be used as key candidate materials in the fabrication of modern optoelectronic devices.


2015 ◽  
Vol 773-774 ◽  
pp. 739-743
Author(s):  
A.N. Afaah ◽  
N.A.M. Asib ◽  
Aadila Aziz ◽  
Ruziana Mohamed ◽  
Kevin Alvin Eswar ◽  
...  

Mist-atomization deposition method was applied in order to grow ZnO nanoparticles on Au-seeded glass substrates acting as seeded template. Ag doped ZnO thin films were deposited on ZnO seeded templates by solution-immersion method. The influence of Ag doping content on the optical and Raman scattering properties of ZnO films were systematically investigated by UV-Vis transmittance measurement measured by ultra-violet visible spectroscopy (UV-Vis) and Raman scattering spectrum measured by Raman spectroscopy under room temperature. From UV-Vis transmittance measurement, the incorporation of Ag dopant to the ZnO makes the transmittance wavelength shifted to the shorter wavelength as compared to the pure ZnO. From Raman spectra, 4 cm-1 downshift is observed in Ag-doped thin films as compared to pure ZnO thin films. This Raman peak shift shows that a tensile stress existed in the Ag-doped ZnO film.


2012 ◽  
Vol 509 ◽  
pp. 279-287
Author(s):  
Deng Kui Miao ◽  
Qing Nan Zhao ◽  
Yu Hong Dong ◽  
Wen Hui Yuan ◽  
Lei Wu ◽  
...  

ZnO:Al thin films were deposited on low-iron glass substrates (size: 1100×1400 mm2 ) in an in-line sputtering system, using ZnO:Al ceramic targets. The initially smooth films exhibit high transparencies (T≥85% for visible light) and excellent electrical properties (carrier concentration N=3.810×1020cm-3, mobility μ=20.47 cm2/V•s). The films, etched by diluted HCl for different time, appear roughness morphology with suitable angles and crater structure, used for controlling the light scattering properties of the textured ZnO:Al films. Moreover, the electrical properties are not affected by the etching process. Thus, it is possible to optimize separately the electro-optical and light trapping properties. The textured ZnO:Al films (haze 21.2%, 550 nm) were used as front contacts for amorphous silicon thin film solar cells prepared by PECVD, 6.5% conversion efficiency were obtained.


2012 ◽  
Vol 198-199 ◽  
pp. 28-31
Author(s):  
Chun Ya Li ◽  
Xi Feng Li ◽  
Long Long Chen ◽  
Ji Feng Shi ◽  
Jian Hua Zhang

Under different growth conditions, silicon Oxide (SiOx) thin films were deposited successfully on Si (100) substrates and glass substrates by plasma enhanced chemical vapor deposition (PECVD). The thickness, refractive index and growth rate of the thin films were tested by ellipsometer. The effects of deposition temperature on the structure and properties of SiOx films were studied using X ray diffraction (XRD), X ray photoelectron spectroscopy (XPS) and UV-Visible spectroscopy. The results show that the SiOx films were amorphous at different deposition temperature. The peaks of Si2p and O1s shifted to higher binding energy with temperature increasing. The SiOx films had high transmissivity at the range of 400-900nm. By analyzing the observation and data, the influence of deposition parameters on the electrical properties and interface characteristics of SiOx thin film prepared by PECVD is systematically discussed. At last, SiOx thin film with excellent electrical properties and good interface characteristic is prepared under the relatively optimum parameters.


2013 ◽  
Vol 91 (8) ◽  
pp. 658-661 ◽  
Author(s):  
C.B. Nelson ◽  
T.H. Gilani

The anisotropy in DC electrical resistivity of a chromium (Cr) sculptured thin film (STF) prepared on a glass substrate is measured and explained using a simple linear dielectric model for electrical conduction in metallic STFs. The experimental anisotropy as a function of growth angle of Cr columns on a glass substrate is in good agreement with the model.


Sign in / Sign up

Export Citation Format

Share Document