Electro-osmosis modulated biologically inspired flow of solid liquid suspension in a channel with complex progressive wave: An application of targeted drugging

Author(s):  
A. Zeeshan ◽  
F. Bashir ◽  
F. Alzahrani

Electrokinetic microperistaltic pumps are important biomechanical devices, helps in targeted drugging of sick body parts. The current article is written to focus on mathematical modelling and analysis of some important aspect of such flows in a channel with complex wave. It is considered that solid partilcle are uniformly distributed in the flow and these particle are non-conducting. Parameters such as Particle volume fraction coefficient, Electro-osmotic parameter and Helmholtz-Smoluchowski parameter are specially been focused in this study. Spherical shaped equally sized are uniformly floated in a non-Newtonian Powell-Eyring base fluid. The defined flow problem is modelled and analyzed analytically for the transport of solid liquid suspension. It is accepted that the flow is steady, nonturbulent and propagating waves do have a considerably longer wave-length when compared to amplitude. The conditions and assumptions lead to a model of coupled partial differential equations of order two. The exact results by HPM expansion method are procured and shown accordingly. The predictions about the behaviour of important appearing parameters are displayed using figures. The impact of sundry parameters are analyzed. The application of current study involved transporting/ targeted drug delivery system using Peristaltic micropumps and magnetic field in pharmacological engineering of biofluids like blood.

2021 ◽  
Vol 9 (9) ◽  
pp. 961
Author(s):  
Rui-Jie Zhao ◽  
You-Long Zhao ◽  
De-Sheng Zhang ◽  
Yan Li ◽  
Lin-Lin Geng

Erosion in centrifugal pumps for transporting flows with dilute particles is a main pump failure problem in many engineering processes. A numerical model combining the computational fluid dynamics (CFD) and Discrete Element Method (DEM) is applied to simulate erosion in a centrifugal pump. Different models of the liquid-solid inter-phase forces are implemented, and the particle-turbulence interaction is also defined. The inertial particles considered in this work are monodisperse and have finite size. The numerical results are validated by comparing the results with a series of experimental data. Then, the effects of particle volume fraction, size, and shape on the pump erosion are estimated in the simulations. The results demonstrate that severe erosive areas are located near the inlet and outlet of the pressure side of the impeller blade, the middle region of the blade, the corners of the shroud and hub of the impeller adjoining to the pressure side of the blade, and the volute near the pump tongue. Among these locations, the maximum erosion occurs near the inlet of the pressure side of the blade. Erosion mitigation occurs under the situation where more particles accumulate in the near-wall region of the eroded surface, forming a buffering layer. The relationship between the particle size and the erosion is nonlinear, and the 1 mm particle causes the maximum pump erosion. The sharp particles cause more severe erosion in the pump because both the frequency of particle-wall collisions and the impact angle increase with the increasing sharpness of the particle.


Author(s):  
Y. J. Kim ◽  
S. M. Han ◽  
N. S. Woo

In directional drilling, it is difficult to adjust and control the cuttings, so it is very important to evaluate the flow characteristics of a drilling flow field. In this study, solid-liquid two-phase flow experiments have been carried out in non-Newtonian fluids for hole inclinations from vertical to 75 degrees, flow velocities from 0.33 m/s to 0.66 m/s, particle concentration from 4 to 16 %, and pipe rotations from 0 to 400 rpm. Pressure drop within the test section, and particle volume fraction are measured for the above test conditions. These quantities were influenced by particle concentration within the flow, pipe rotation, flow volume, and inclination of the annulus. Moreover, empirical correlations were developed for estimating friction coefficient and particle volume fraction inside annulus. The new correlations generated in this study are believed to be very practical and handy when they are used in the field. Therefore, this study can provide meaningful data for directional drillings.


2019 ◽  
Vol 16 (4) ◽  
pp. 791-809
Author(s):  
Himanshu Upreti ◽  
Sawan Kumar Rawat ◽  
Manoj Kumar

Purpose The purpose of this paper is to examine the velocity and temperature profile for a two-dimensional flow of single- and multi-walled nanotubes (CNTs)/H2O nanofluid over a flat porous plate, under the impact of non-uniform heat sink/source and radiation. The influence of suction/blowing, viscous dissipation and magnetic field is also incorporated. Design/methodology/approach The solution of the PDEs describing the flow of nanofluid is accomplished using Runge–Kutta–Fehlberg approach with shooting scheme. Findings Quantities of physical importance such as local Nusselt number and skin friction coefficient for both types of nanotubes are computed and shown in tables. Also, the impact of copious factors like Prandtl number, magnetic field, Eckert number, porosity parameter, radiation parameter, non-linear stretching parameter, injection/suction, heating variable, particle volume fraction and non-uniform heat sink/source parameter on temperature and velocity profile is explained in detail with the aid of graphs. Originality/value Till date, no study has been reported that examines the role of radiation and non-uniform heat sink/source on MHD flow of CNTs‒water nanofluid over a porous plate. The numerical outcomes attained for the existing work are original and their originality is authenticated by comparing them with earlier published work. This problem is of importance, as there are many applications of the fluid flowing over a flat porous plate.


2019 ◽  
Vol 33 (35) ◽  
pp. 1950439 ◽  
Author(s):  
M. M. Bhatti ◽  
Rahmat Ellahi ◽  
A. Zeeshan ◽  
M. Marin ◽  
N. Ijaz

In this paper, the effects of heat transfer and Hall current on the sinusoidal motion of solid particles through a planar channel has been discussed. The walls of the channel are considered as compliant under the effects of magnetohydrodynamics. The mathematical formulation has been performed using energy equation, momentum equation, and Ohm’s law. The modeled equations are further modified by taking the assumption of a zero Reynolds number and long wavelength. Numerical shooting technique has been employed to solve the nonlinear differential equations. The impact of all the emerging parameters such as wall rigidity, wall tension, mass characterization, Hall parameter, Hartmann number, Weissenberg number, particle volume fraction, Prandtl number, and Eckert number, respectively. Particularly, we discussed their effects on velocity and temperature profile.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Run-pu Li ◽  
Cheng-bin Du ◽  
Fei Guo ◽  
Guo-jun Yu ◽  
Xiao-guo Lin

Magnetorheological elastomer (MRE) vibration isolation devices can improve a system’s vibration response via adjustable stiffness and damping under different magnetic fields. Combined with negative stiffness design, these MRE devices can reduce a system’s stiffness and improve the vibration control effect significantly. This paper develops a variable negative stiffness MRE isolation device by combining an improved separable iron core with laminated MREs. The relationship between the negative stiffness and the performance of the device is obtained by mathematical transformation. Its vibration response under simple harmonic excitation at small amplitude and the impact of the volume fraction of soft magnetic particles on the isolation system are also analyzed. The results show that the negative stiffness produced by the magnetic force is a major factor affecting the capacity of the isolation system. Compared to devices of the same size, the isolation system equipped with low-particle volume fraction MREs demonstrates better performance.


2011 ◽  
Vol 130-134 ◽  
pp. 3640-3643
Author(s):  
Ding Feng ◽  
Si Huang ◽  
Li Luo ◽  
Wei Guo Ma

This paper presents a performance analysis of a solid-liquid hydrocyclone using Ansys-CFX software. Based on the simulation, the influence of particle volume fraction of feed flow, mean diameter of particles and viscosity of liquid phase on the two-phase flow and separating performance has been investigated for optimizing design.


2011 ◽  
Vol 704-705 ◽  
pp. 1000-1005
Author(s):  
Yan Pei Song ◽  
Yong Kai Li ◽  
Hui Gai Wang

The dead or scrap WCP/Fe-C composites parts were remelted via medium frequency induction furnace. Two recycled composites rings were made of the remelted mixture by centrifugal casting method at 720rpm and 920rpm, respectively. The effect of rotating speed of centrifugal machine on microstructures and properties of the recycled composites rings were investigated by mechanical property tester, SEM, EDS, and XRD. The results show that the recycled rings are a composite structure consisting of outer recycled composites region reinforced with undissoved WCP and core Fe-C alloy region unreinforced. The undissoved WCP-distribution in the recycled composites region is even. At the rotating speed of 720 rpm, the particle volume fraction in the recycled composites region reaches 54 vol.%, the hardness and impact toughness attain to HRC55.8 and 3.5J/cm2, respectively. As the rotating speed is raised to 920 rpm, the particle volume fraction rises to about 70 vol.%, the hardness increases to HRC63.3 and yet the impact reduces to 2.8 J/cm2. The microstructure in the inner Fe-C alloy region consists of bainitic, precipitated carbides with short rod like shape and graphite phase. Finally, the high-speed sliding wear behaviour of the recycled composites rings was investigated in the paper. Keywords: The dead or scrap composites parts; Recycled composites; rotating speed of centrifugal machine; Microstructures and properties.


2015 ◽  
Vol 19 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Jahar Sarkar

The theoretical analyses of the double-tube gas cooler in transcritical carbon dioxide refrigeration cycle have been performed to study the performance improvement of gas cooler as well as CO2 cycle using Al2O3, TiO2, CuO and Cu nanofluids as coolants. Effects of various operating parameters (nanofluid inlet temperature and mass flow rate, CO2 pressure and particle volume fraction) are studied as well. Use of nanofluid as coolant in double-tube gas cooler of CO2 cycle improves the gas cooler effectiveness, cooling capacity and COP without penalty of pumping power. The CO2 cycle yields best performance using Al2O3-H2O as a coolant in double-tube gas cooler followed by TiO2-H2O, CuO-H2O and Cu-H2O. The maximum cooling COP improvement of transcritical CO2 cycle for Al2O3-H2O is 25.4%, whereas that for TiO2-H2O is 23.8%, for CuO-H2O is 20.2% and for Cu-H2O is 16.2% for the given ranges of study. Study shows that the nanofluid may effectively use as coolant in double-tube gas cooler to improve the performance of transcritical CO2 refrigeration cycle.


Sign in / Sign up

Export Citation Format

Share Document