Rosiglitazone protects rat liver against acute liver injury associated with the NF-κB signaling pathway

2016 ◽  
Vol 94 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Wei Chen ◽  
Yuan-Jie Lin ◽  
Xu-Ya Zhou ◽  
Hao Chen ◽  
Yong Jin

Rosiglitazone, which is mainly used in the treatment of diabetes mellitus, is also involved in the regulation of inflammation. The peroxisome proliferator-activated receptor (PPAR)-γ receptor subtype appears to play a pivotal role in the regulation of inflammation. However, the exact mechanism for the protective effects of rosiglitazone against inflammation such as liver injury remains unclear. The aim of this study was to investigate the effects of rosiglitazone on inflammation in the liver of rats treated with D-GaIN/LPS. Male Sprague–Dawley rats were injected with D-GaIN/LPS with or without pre-administration of rosiglitazone (3, 10, or 30 mg/kg, intraperitoneal injection). Our data showed that rosiglitazone significantly inhibited D-GaIN/LPS-induced hepatotoxicity in a dose-dependent manner, as indicated by both diagnostic indicators of liver damage (serum aminotransferase activities) and histopathological analysis. Western blot analysis showed that rosiglitazone significantly decreased protein expression levels of COX-2 and production of pro-inflammatory markers, including TNF-α and IL-6, in D-GaIN/LPS-treated rat liver. The results indicated that the inhibition of D-GaIN/LPS-induced inflammation by rosiglitazone can be attributed, at least partially, to its capacity to regulate the the immunoregulatory transcription factor nuclear factor kappa B (NF-κB) signaling pathway.

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yang Feng ◽  
Ruixia Cui ◽  
Zeyu Li ◽  
Xia Zhang ◽  
Yifan Jia ◽  
...  

Acetaminophen- (APAP-) induced hepatic injury is an important clinical challenge. Oxidative stress, inflammation, apoptosis, and endoplasmic reticulum stress (ERS) contribute to the pathogenesis. Methane has potential anti-inflammatory, antioxidant, and antiapoptotic properties. This project was aimed at studying the protective effects and relative mechanisms of methane in APAP-induced liver injury. In the in vivo experiment, C57BL/6 mice were treated with APAP (400 mg/kg) to induce hepatic injury followed by methane-rich saline (MRS) 10 ml/kg i.p. after 12 and 24 h. We observed that MRS alleviated the histopathological lesions in the liver, decreased serum aminotransferase levels, reduced the levels of inflammatory cytokines, suppressed the nuclear factor-κB expression. Further, we found that MRS relieved oxidative stress by regulating the Nrf2/HO-1/NQO1 signaling pathway and their downstream products after APAP challenge. MRS also regulated proteins associated with ERS-induced apoptosis. In the in vitro experiment, the L-02 cell line was treated with APAP (10 mM) to induce hepatic injury. We found that a methane-rich medium decreased the levels of reactive oxygen species (DHE fluorescent staining), inhibited apoptosis (cell flow test), and regulated the Nrf2/HO-1/NQO1 signaling pathway. Our data indicated that MRS prevented APAP-induced hepatic injury via anti-inflammatory, antioxidant, anti-ERS, and antiapoptotic properties involving the Nrf2/HO-1/NQO1 signaling pathway.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Li-ping Han ◽  
Chun-jun Li ◽  
Bei Sun ◽  
Yun Xie ◽  
Yue Guan ◽  
...  

Immune and inflammatory pathways play a central role in the pathogenesis of diabetic liver injury. Celastrol is a potent immunosuppressive and anti-inflammatory agent. So far, there is no evidence regarding the mechanism of innate immune alterations of celastrol on diabetic liver injury in type 2 diabetic animal models. The present study was aimed at investigating protective effects of celastrol on the liver injury in diabetic rats and at elucidating the possible involved mechanisms. We analyzed the liver histopathological and biochemical changes and the expressions of TLR4 mediated signaling pathway. Compared to the normal control group, diabetic rats were found to have obvious steatohepatitis and proinflammatory cytokine activities were significantly upregulated. Celastrol-treated diabetic rats show reduced hepatic inflammation and macrophages infiltration. The expressions of TLR4, MyD88, NF-κB, and downstream inflammatory factors IL-1βand TNFαin the hepatic tissue of treated rats were downregulated in a dose-dependent manner. We firstly found that celastrol treatment could delay the progression of diabetic liver disease in type 2 diabetic rats via inhibition of TLR4/MyD88/NF-κB signaling cascade pathways and its downstream inflammatory effectors.


2017 ◽  
Vol 45 (01) ◽  
pp. 105-121 ◽  
Author(s):  
Chia-Chih Liao ◽  
Yuan-Ji Day ◽  
Hung-Chen Lee ◽  
Jiin-Tarng Liou ◽  
An-Hsun Chou ◽  
...  

Acetaminophen (APAP) overdose causes hepatocytes necrosis and acute liver failure. Baicalin (BA), a major flavonoid of Scutellariae radix, has potent hepatoprotective properties in traditional medicine. In the present study, we investigated the protective effects of BA on a APAP-induced liver injury in a mouse model. The mice received an intraperitoneal hepatotoxic dose of APAP (300[Formula: see text]mg/kg) and after 30[Formula: see text]min, were treated with BA at concentrations of 0, 15, 30, or 60[Formula: see text]mg/kg. After 16[Formula: see text]h of treatment, the mice were sacrificed for further analysis. APAP administration significantly elevated the serum alanine transferase (ALT) enzyme levels and hepatic myeloperoxidase (MPO) activity when compared with control animals. Baicalin treatment significantly attenuated the elevation of liver ALT levels, as well as hepatic MPO activity in a dose- dependent manner (15–60[Formula: see text]mg/kg) in APAP-treated mice. The strongest beneficial effects of BA were seen at a dose of 30[Formula: see text]mg/kg. BA treatment at 30[Formula: see text]mg/kg after APAP overdose reduced elevated hepatic cytokine (TNF-[Formula: see text] and IL-6) levels, and macrophage recruitment around the area of hepatotoxicity in immunohistochemical staining. Significantly, BA treatment can also decrease hepatic phosphorylated extracellular signal-regulated kinase (ERK) expression, which is induced by APAP overdose. Our data suggests that baicalin treatment can effectively attenuate APAP-induced liver injury by down-regulating the ERK signaling pathway and its downstream effectors of inflammatory responses. These results support that baicalin is a potential hepatoprotective agent.


1998 ◽  
Vol 26 (4) ◽  
pp. 541-548
Author(s):  
Roger J. Price ◽  
Anthony B. Renwick ◽  
Paula T. Barton ◽  
J. Brian Houston ◽  
Brian G. Lake

This study investigated the effects of some experimental variables on the rate of xenobiotic metabolism in precision-cut rat liver slices. Liver slices of 123 ± 8μm (mean ± SEM of six slices), 165 ± 3μm, 238 ± 6μm and 515 ± 14μm thickness were prepared from male Sprague-Dawley rats, and incubated in RPMI 1640 medium in an atmosphere of 95% O2/5% CO2 by using a dynamic organ culture system. Liver slices of all thicknesses metabolised 10μM 7-ethoxycoumarin to total (free and conjugated) 7-hydroxycoumarin in a time-dependent manner. The rate of 7-ethoxycoumarin metabolism was greatest in 165μm thick slices and slowest in 515μm thick slices, being 2.74 ± 0.19pmol/minute/mg slice protein and 0.69 ± 0.07pmol/minute/mg slice protein, respectively. No marked effects on the rate of 7-ethoxycoumarin metabolism in liver slices were observed either by changing the medium to Earle's balanced salt solution (EBSS) or by changing the gas phase to 95% air/5% CO2. Moreover, the perfusion of rat livers with EBSS at 2–4°C, prior to preparation of tissue cores, did not enhance 7-ethoxycoumarin metabolism in rat liver slices. In this study, the optimal slice thickness was 175μm, with higher rates of 7-ethoxycoumarin metabolism being observed than with 250μm thick slices, which are often used for studies of xenobiotic metabolism. Variable results were obtained with slices of around 100–120μm thickness, which may be attributable to the ratio between intact hepatocytes and cells damaged by the slicing procedure in these very thin slices.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Da Tang ◽  
Guang Fu ◽  
Wenbo Li ◽  
Ping Sun ◽  
Patricia A. Loughran ◽  
...  

Abstract Background Hepatic ischemia/reperfusion (I/R) injury can be a major complication following liver surgery contributing to post-operative liver dysfunction. Maresin 1 (MaR1), a pro-resolving lipid mediator, has been shown to suppress I/R injury. However, the mechanisms that account for the protective effects of MaR1 in I/R injury remain unknown. Methods WT (C57BL/6J) mice were subjected to partial hepatic warm ischemia for 60mins followed by reperfusion. Mice were treated with MaR1 (5-20 ng/mouse), Boc2 (Lipoxin A4 receptor antagonist), LY294002 (Akt inhibitor) or corresponding controls just prior to liver I/R or at the beginning of reperfusion. Blood and liver samples were collected at 6 h post-reperfusion. Serum aminotransferase, histopathologic changes, inflammatory cytokines, and oxidative stress were analyzed to evaluate liver injury. Signaling pathways were also investigated in vitro using primary mouse hepatocyte (HC) cultures to identify underlying mechanisms for MaR1 in liver I/R injury. Results MaR1 treatment significantly reduced ALT and AST levels, diminished necrotic areas, suppressed inflammatory responses, attenuated oxidative stress and decreased hepatocyte apoptosis in liver after I/R. Akt signaling was significantly increased in the MaR1-treated liver I/R group compared with controls. The protective effect of MaR1 was abrogated by pretreatment with Boc2, which together with MaR1-induced Akt activation. MaR1-mediated liver protection was reversed by inhibition of Akt. Conclusions MaR1 protects the liver against hepatic I/R injury via an ALXR/Akt signaling pathway. MaR1 may represent a novel therapeutic agent to mitigate the detrimental effects of I/R-induced liver injury.


2021 ◽  
Vol 11 (1) ◽  
pp. 390
Author(s):  
Beom-Rak Choi ◽  
Il-Je Cho ◽  
Su-Jin Jung ◽  
Jae-Kwang Kim ◽  
Dae-Geon Lee ◽  
...  

Lemon balm and dandelion are commonly used medicinal herbs exhibiting numerous pharmacological activities that are beneficial for human health. In this study, we explored the protective effects of a 2:1 (w/w) mixture of lemon balm and dandelion extracts (MLD) on carbon tetrachloride (CCl4)-induced acute liver injury in mice. CCl4 (0.5 mL/kg; i.p.) injection inhibited body weight gain and increased relative liver weight. Pre-administration of MLD (50–200 mg/kg) for 7 days prevented these CCl4-mediated changes. In addition, histopathological analysis revealed that MLD synergistically alleviated CCl4-mediated hepatocyte degeneration and infiltration of inflammatory cells. MLD decreased serum aspartate aminotransferase and alanine transferase activities and reduced the number of liver cells that stained positive for cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase, suggesting that MLD protects against CCl4-induced hepatic damage via the inhibition of apoptosis. Moreover, MLD attenuated CCl4-mediated lipid peroxidation and protein nitrosylation by restoring impaired hepatic nuclear factor erythroid 2-related factor 2 mRNA levels and its dependent antioxidant activities. Furthermore, MLD synergistically decreased mRNA and protein levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the liver. Together, these results suggest that MLD has potential for preventing acute liver injury by inhibiting apoptosis, oxidative stress, and inflammation.


2015 ◽  
Vol 10 (2) ◽  
pp. 393 ◽  
Author(s):  
Liaqat Hussain ◽  
Muhammad Sajid Hamid Akash ◽  
Madeha Tahir ◽  
Kanwal Rehman

<span><em>Sapium sebiferum</em> leaves were used to determine its hepatoprotective effects against paracetamol-induced hepatotoxicity in mice. A dose dependent study was conducted using two different doses (200 mg/kg and 400 mg/kg) of the extract of </span><em>S. sebiferum</em><span> against toxic effects of paracetamol (500 mg/kg) in experimental animal model. Silymarin (50 mg/kg) was used as standard drug to compare therapeutic effects of </span><em>S. sebiferum</em><span> with control and paracetamol-treated groups. Paracetamol significantly increased the serum levels of liver enzyme markers like alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, and direct bilirubin. The extract showed protective effects by normalizing the liver enzymes markers in a dose dependent manner. Histopathological results confirmed the hepatoprotective effects of leaves of </span><em>S. sebiferum</em><span>. We conclude that leaves of </span><em>S. sebiferum</em><span> have strong hepatoprotective effects against paracetamol-induced liver injury and can be used in liver injuries caused by drug-induced toxicity.</span>


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Jianhua Huang ◽  
Li Li ◽  
Weifeng Yuan ◽  
Linxin Zheng ◽  
Zhenhui Guo ◽  
...  

The aim of the present study is to investigate the protective effects and relevant mechanisms exerted by NEMO-binding domain peptide (NBD) against lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice. The ALI model was induced by intratracheally administered atomized LPS (5 mg/kg) to BABL/c mice. Half an hour before LPS administration, we treated the mice with increasing concentrations of intratracheally administered NBD or saline aerosol. Two hours after LPS administration, each group of mice was sacrificed. We observed that NBD pretreatment significantly attenuated LPS-induced lung histopathological injury in a dose-dependent manner. Western blotting established that NBD pretreatment obviously attenuated LPS-induced IκB-αand NF-κBp65 activation and NOX1, NOX2, and NOX4 overexpression. Furthermore, NBD pretreatment increased SOD and T-AOC activity and decreased MDA levels in lung tissue. In addition, NBD also inhibited TNF-αand IL-1βsecretion in BALF after LPS challenge. In conclusion, NBD protects against LPS-induced ALI in mice.


1999 ◽  
Vol 277 (3) ◽  
pp. G702-G708 ◽  
Author(s):  
Alix de la Coste ◽  
Monique Fabre ◽  
Nathalie McDonell ◽  
Arlette Porteu ◽  
Helène Gilgenkrantz ◽  
...  

Fas ligand (CD95L) and tumor necrosis factor-α (TNF-α) are pivotal inducers of hepatocyte apoptosis. Uncontrolled activation of these two systems is involved in several forms of liver injury. Although the broad antiapoptotic action of Bcl-2 and Bcl-xL has been clearly established in various apoptotic pathways, their ability to inhibit the Fas/CD95- and TNF-α-mediated apoptotic signal has remained controversial. We have demonstrated that the expression of BCL-2 in hepatocytes protects them against Fas-induced fulminant hepatitis in transgenic mice. The present study shows that transgenic mice overexpressing[Formula: see text]in hepatocytes are also protected from Fas-induced apoptosis in a dose-dependent manner. Bcl-xL and Bcl-2 were protective without any change in the level of endogenous[Formula: see text]or Bax and inhibited hepatic caspase-3-like activity. In vivo injection of TNF-α caused massive apoptosis and death only when transcription was inhibited. Under these conditions,[Formula: see text]mice were partially protected from liver injury and death but PK-BCL-2 mice were not. A similar differential protective effect of Bcl-xL and Bcl-2 transgenes was observed when Fas/CD95 was activated and transcription blocked. These results suggest that apoptosis triggered by activation of both Fas/CD95 and TNF-α receptors is to some extent counteracted by the transcription-dependent protective effects, which are essential for the antiapoptotic activity of Bcl-2 but not of Bcl-xL. Therefore, Bcl-xL and Bcl-2 appear to have different antiapoptotic effects in the liver whose characterization could facilitate their use to prevent the uncontrolled apoptosis of hepatocytes.


Sign in / Sign up

Export Citation Format

Share Document